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ABSTRACT
The hazard of a child dying before reaching 5 years is highest in sub-Saharan African
countries including Malawi, with elevated risk in rural areas. Chiradzulu district has a
higher under-five mortality rate as compared to a national average mortality rate for
Malawi. The main aim of the study was to model and determine survival patterns of
under-five children living with HIV who were on antiretroviral therapy. Using
retrospective secondary data for 186 cases of under five children on anti-retroviral
therapy, collected from July 2011 through July 2016, both Cox and parametric models
were analyzed. The effect of the following covariates were investigated: Weight,
height, sex, residence, mother’s occupation, mother’s education level and mother’s
marital status. Weibull, exponential, Gompertz, loglogistic and lognormal regression
were performed as parametric models and Cox as a semi-parametric model. Akaike
Information Criterion (AIC) was used to compare the efficiency of fitted models.
Residence, mother’s education level, mothers’ occupation and weight factors
influenced the survival of under-five children living with HIV in Chiradzulu District.
During the study, 56 (30.0%) of the participants died. Gompertz model was found to be
the best fit model for predicting survival of under-five children living with HIV on
antiretroviral therapy in Chiradzulu district. It is recommended that the results should
be substantiated by similar survival studies from other parts of the district to generalize
the results to other individuals in the country. Researchers should check the underlying
assumptions of Cox model before using it in order to use a proper model during

analysis.
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CHAPTER 1
INTRODUCTION
1.1  Background and history
As of 2018, of the estimated nearly 38 million people worldwide living with HIV,
approximately 1.7 million were children under 15 years of age. Since 2010, new HIV
infections among children have declined by 41%, but only half (54%) of all children
living with HIV are getting treatment and 100,000 children died of AIDS-related

illnesses in 2018 (UNAIDS, 2019).

Globally, it was estimated that about 5.4 million children aged under-five die each year,
with huge variations and trends across regions and nations (UNICEF, 2017). A 2017
UNICEF report on child mortality states that most of these children deaths happened in
two particular regions: sub-Saharan Africa (SSA) (38%) and South Asia (39%). Over
half of these deaths occurred in just five nations: the Democratic Republic of the Congo,
India, Ethiopia, Nigeria and Pakistan. All things considered, 1 out of every 13 children
born in sub-Saharan Africa dies before their fifth birthday as against 1 out of every 185
in high-income countries- meaning that the highest proportions of under-five mortality

are concentrated in sub-Saharan Africa and South Asia (UNICEF, 2017).

The burden of mortality in children has remained a key area of concern for nations and
organizations in the world. The year 2018 recorded approximately 5.3 million children

and infant deaths worldwide. The risk of under-five mortality in the WHO Africa region



was 76 deaths per 1000 live births, which was eight-times higher than the WHO

European region (WHO, 2018). This is far from ideal and is a worrying situation.

The Malawi Population Based HIV Impact Assessment (MPHIA) is the first survey in
Malawi to measure National HIV incidence, pediatric HIV prevalence and viral load
suppression. Malawi has an overall adult HIV prevalence of 10.6% in the general
population and of the estimated one million people living with HIV, 10% are children
with pediatric HIV prevalence of 1.6% (MPHIA, 2016). Globally, under-five mortality
rate declined by 61 per cent, from 93 deaths per 1,000 live births in 1990 to 37 in 2020
(UNIGME, 2021; UNICEF, 2021). This is equivalent to 1 in 11 children dying before
reaching age 5 in 1990, compared to 1 in 27 in 2020. With the end of the Millennium
Development Goals (MDGs) era, the international community agreed on a new
framework — the Sustainable Development Goals (SDGs) where the target is to end
preventable deaths of new-borns and children under 5 years of age. The goal is for all
countries to reduce under-five mortality to at least as low as 25 per 1000 live births. In
2019, child mortality rate for Malawi was 41.6 deaths per 1,000 live births. Child
mortality rate of Malawi fell gradually from 341.3 deaths per 1,000 live births in 1970
to 41.6 deaths per 1,000 live births in 2019 (Malawi Child Mortality rate, 1960-2019,
knoema.com).

Credible estimates of what this burden entails are essential for the establishment of
informed health policies in order to implement effective health interventions. Although
data exist on the rate of mortality and morbidity of children under the age of five years
exposed to HIV in Africa, there is still little information regarding the area-specific

infectious disease morbidity and mortality rates.



In 2011, Malawi started implementing Prevention of Mother to Child Transmission
(PMTCT) Option B+ policy, making life-long ART available for all HIV infected
pregnant and breastfeeding women, regardless of clinical stage or cluster of
differentiation 4 (CD4) count. This has resulted in a 66% reduction of vertical
transmission within 3 years. This Malawi-pioneered strategy has since been included
in global guidance by World Health organisation (WHQO). As of February 2014, 12

other African countries were implementing Option B+ (WHO, 2018).

1.2 HIV prevalence in Chiradzulu

Chiradzulu district is located in the southern region of Malawi. The district has an
estimated population of 356,875 (NSO Malawi, 2018). Chiradzulu district hospital
started providing free antiretroviral (ARV) drugs in 2001. According to the 2015/2016
Malawi Demographic and Health Survey (MDHS), Chiradzulu District has an HIV
prevalence of 9.2%, which is higher than the national average of 8.8% (MDHS, 2016),
with a total number of 49,348 sexually active populations who have ever been tested
for HIV and received results.

Supported by Médecins Sans Frontiéres, decentralization of ART provision and
treatment to other 11 health facilities was completed in 2003. Task shifting allowing
nurses to initiate ART started in 2006. Other HIV programs such as HIV counselling
and testing (HTC) and prevention to mother transmission (PMTCT) were also scaled
up and decentralised. The Elizabeth Glaser Paediatric AIDS Foundation (EGPAF) also

provides paediatric HIV prevention, care and treatment services.

In addition to what the non-governmental organizations are doing, the hospital has also

resources which are being used to address the HIV prevalence like drugs for the



prevention of mother to child transmission of HIV. It does also provide information
about HIV and AIDS, civic education and communications through posters among
others. Despite these efforts, lack of some drugs like flaconazole, vincristine as well as
cotrimoxazole preventive therapy for treating opportunistic infections continue to be a
major factor contributing to the mortality of people living with HIV and AIDS and this

poses challenge for the district hospital (Chiradzulu District Council, 2017).

1.3 Problem statement

Pediatric HIV significantly contributes to overall child mortality and morbidity
especially in high-burden countries. Malawi government has put in place strategies to
meet the target of reducing by two thirds the mortality of under-five children. The
Malawi Growth Development Strategy (MGDS I11), Key Priority Area 5 (Health and
Population), that is linked to Sustainable Development Goal (SDG) number 3, “Ensure
healthy lives and promote well-being for all at all ages”, targets reduction of under-
five mortality at least as low as 25 per 1000 live births. Currently, under-five mortality
rate for Chiradzulu district is at 65 deaths per 1000 live births (Chiradzulu District
Council, 2017).

Since the initiation of ART and Pre ART follow up program in 2001 at Chiradzulu
District hospital, there has been no formal analysis to report on the survival patterns of
under-five children living with HIV who are enrolled on HIV care. A study of children
initiating ART younger than 5 years of age in rural Zambia between 2008 and 2015
responded well to treatment (Jessica et al., 2021). Hence this study aimed at reporting
on survival of under-five children living with HIV and determinants for survival by

comparing Cox and parametric models in Malawi, Chiradzulu.



There are two major regression models used for right censored data: proportional
hazards model (Cox) as a semi parametric method (Cox, 1972) and parametric model.
Many of the standard parametric models such as Weibull, Exponential, Loglogistics,
Gompertz and Lognormal are accelerated failure time models. However, Cox
regression is the most widely employed model in survival analysis while parametric
models lead to some benefits (Lawless, 2011). Researchers in medical sciences often
tend to prefer semi parametric instead of parametric because of its less assumptions but
some comments recommended that under certain circumstances, parametric models

estimate the parameter more efficient than Cox (Oakes, 1977).

Ata and Sozer (2007) argued that Cox regression model relies on the hazards being
proportional, i.e. on a given covariate, its coefficient not changing over time. If this
assumption is violated, the general Cox regression model is not suitable, and more
appropriate analyses such as the stratified Cox regression model or the extended Cox

regression model, including parametric duration models can be applied.

1.4  Study objectives

General objective

The main aim of the study was to model and determine survival patterns of under-five

children living with HIV enrolled on antiretroviral therapy.

Specific objectives

The study aimed at addressing the following specific objectives:



1) To develop the best statistical model for the survival of under-five children
living with HIV in Chiradzulu;

i) To compare statistically between Cox proportional hazard and parametric
hazard models for analyzing data of under-five children living with HIV on
antiretroviral therapy in Chiradzulu;

Iii) To determine factors affecting the survival of under-five children living with

HIV on antiretroviral therapy in Chiradzulu.

1.5  Significance of the study

Apprehension of the survival patterns of under-five children living with HIVV on ART
and determinants for their survival rate is important to the development and
implementation of HIV programme for under five Children. The absence of adequate
progress in reducing the rates of under-five mortality by many of the developing
countries has resulted in the newly adopted Sustainable Development Goals (SDGSs),
with the target of reducing under-five mortality to 25 per 1,000 or less by 2030 (United
Nations, 2015).

The Malawi Growth and Development Strategy (MGDS) 11l emphasises on improved
quality of health services, patient safety and people centered services in order to reduce
incidence and prevalence of diseases. Its strategy is to strengthen prevention and
management of infectious diseases such as HIV/AIDS and sexually transmitted
diseases. In Malawi, the following HIV prevention programmes are implemented:
condom availability and use, HIV education and approach to sex education, prevention
from mother to child transmission, voluntary medical male circumcision (VMMC) and
Pre-exposure prophylaxis (PrEP). Therefore, it is expected that the results from this

study will assist in improving HIV and AIDS programme for under five children.



Furthermore, the results of this study could lead to improvement of district social

economic profile in addressing the issue of infant mortality.

1.6 Definition of terms

1) Hazard Ratio (HR): is a measure of the relative survival experience of two
groups.

2) Confidence Interval (Cl): is a range of values around an estimate.

3) P-value: is the probability of obtaining results at least as extreme as the
observed results of statistical hypothesis test, assuming that null hypothesis
IS correct.

4) The 90-90-90 targets: refer to the pathway by which a person is tested, linked

and retained in HIV care, and initiates and adheres to antiretroviral drugs.

1.7  Structure of this thesis

The remainder of this thesis has been organized as follows: Chapter two discusses the
literature review with combined statistical theory for AIDS and survival models.
Chapter three discusses the methods employed in analysing the data for this study.
Chapter four presents the results and discussion. Finally, chapter five presents the

conclusion and recommendations for this study.



CHAPTER 2
LITERATURE REVIEW
2.1 Introduction
This chapter discusses the relevant literature for the theory of analysis of time to event
data. The first part of the chapter briefly discusses the HIV and AIDS studies in children

conducted in other countries plus ART provision in Malawi.

There are several models which researchers fit when dealing with survival data. The
most used model is the Cox model. This is usually used because, it does not require any
distribution to represent the survival time, and it is used to study the relationship

between survival rate and covariates in the model.

2.2 HIV and AIDS in East and Southern Africa

Eastern and Southern Africa is the region hardest hit by HIV. It is home to more than
60 percent of children and adolescents worldwide living with HIV. In 2018, an
estimated 1.8 million children and adolescents aged 0-19 years in Eastern and Southern

Africa were living with HIV (UNICEF, 2019).

South Africa accounted for more than a quarter (240,000) of the region’s new infections
in 2018. Seven other countries accounted for more than 50% of new infections:
Mozambique (150,000), Tanzania (72,000), Uganda (53,000), Zambia (48,000), Kenya
(46,000), Malawi (38,000) and Zimbabwe (38,000) (UNAIDS, 2019). Overall, new
infections in the region have declined by 28% since 2010 (UNAIDS, 2019). Around

310,000 people died of AIDS-related illnesses in the region in 2018, although the



number of deaths has fallen by 44% since 2010 (UNAIDS, 2019). Despite the
continuing severity of the epidemic, huge strides have been made towards meeting the
UNAIDS 90-90-90 targets. The 90-90-90 targets refer to the pathway by which a
person is tested, linked and retained in HIV care, and initiates and adheres to

antiretroviral drugs (ARVS).

Despite substantial improvements in accessibility of ART and improved program
implementation, death and loss to follow-up (LTFU) have been a prevailing challenge
among people living with HIV and AIDS (PLWHA) of all ages. However, attrition is
much more pronounced in pediatric cases. There have been various studies conducted
in Sub-Saharan African (SSA) countries to determine the rate of mortality among
pediatric ART patients. A systematic review conducted by Fox et al. (2015), estimated
attrition (death and LTFU) of pediatric ART patients in low and middle-income
countries (LMICs) based on studies from 2008 to 2013. However, the pooled magnitude
of mortality at different ART follow-up periods have not been separately analysed and
reported. The aim of this review was to determine the pooled magnitude of mortality at
different follow-up period among pediatric patients who were on first-line ART in SSA
countries based on studies published since 2014. This timeframe was selected to include
new studies that were not covered in the systematic review conducted in LMICs (Fox
et al.,, 2015). The lessons from such studies can guide pediatric HIV program
implementation in SSA and help policy makers and program managers to make

informed decisions to prevent deaths among pediatric ART patients.



2.3 HIV and ART provision in Malawi

Malawi’s HIV prevalence is one of the highest in the world, with 9.2% of the adult
population (aged 15-49) living with HIV (UNAIDS, 2019). In 2018, an estimated one
million Malawians were living with HIV and 13,000 Malawians died from AIDS-
related illnesses (UNAIDS, 2019). The Malawian HIV epidemic plays a critical role in
the country’s life expectancy of 61 years for men and 67 years for women (WHO,

2021).

Over the last decade, impressive efforts to reduce the HIV epidemic have been made at
both national and local levels. In 2018, 90% of people living with HIV in Malawi were
aware of their status, of whom 87% were on treatment. Of these people, 89% were
virally suppressed, meaning the country was very close to reach the UNAIDS 90-90-
90 targets. This equates to 78% of all people living with HIV in Malawi on antiretroviral
treatment (ART) and 69% of all people living with HIV virally suppressed (UNAIDS,
2019). Among children (0-14 years) treatment coverage is lower at only 61% of HIV-

positive children accessing ART (UNAIDS, 2019).

New infections have dramatically declined from 66,000 new infections in 2005 to
38,000 in 2018 (UNAIDS, 2019). An impressive prevention of mother-to-child
transmission (PMTCT) programme in Malawi has also driven down new HIV
infections among children (ages 0-14). In 2018 there were 3,500 new pediatric

infections, compared with 15,000 in 2010 (UNAIDS, 2019).

In 2015, the World Health Organization (WHQO) announced new universal treatment

guidelines for antiretroviral treatment (ART), which supports initiation of ART for all

10



individuals living with HIV, independent of their immunologic or clinical status (WHO,
2018). Since then, countries throughout sub-Saharan Africa have adopted the
“Universal Test-and-Treat” (Test and Treat) strategy. The strategy is expected to
contribute to improved client outcomes and attaining UNAIDS 90-90-90 treatment

targets, specifically the ART coverage target (UNAIDS, 2014).

2.4 Scaling-up antiretroviral therapy in Malawi

Before the scale-up, an estimated 930 000 people in Malawi were HIV-infected, with
170,000 in immediate need of ART. About 3000 patients were on ART in nine clinics
(Andreas et al., 2016). Relevant changes by December 2015, cumulatively 872,567
patients had been started on ART from 716 clinics, following national treatment

protocols and using the standard monitoring system (Andreas et al., 2016).

2.5  Theory of analysis for survival data

The survival patterns following HIV infections in African population in the era before
antiretroviral therapy form an important baseline for measuring future success of
treatment programmes. The knowledge of the survival times of patients with HIV and
variables that influence survival is important for increasing understanding of the patho-
physiology of the disease, clinical decision making and planning health services
interventions (Isingo et al., 2007). The survival of patients with AIDS may depend on
a variety of factors including hosts, the patterns of diseases present, access to health

care, diagnostic routines and therapeutic interventions (Robert et al., 1995).

The assumption of Cox models is that child survival is dependent on a baseline survival

and certain risk factors, however, this is not often true in reality as survival data are

11



dependent when clusters or locations are considered. This dependency introduces
unobserved random effects (frailties) present at various levels, and suggests the
presence of community level characteristics that influence health outcomes
(Cambridge, 2015). The existence of these effects caused either by a location, or a
presence in certain population clusters leads to the use of spatial survival models to
capture these unobserved effects, especially if they are geographical.

The Ethiopian Demographic and Health Survey data was used for the study of survival
analysis of under-five children and its associated risk factors in Ethiopia. In this study,
it was attempted to find out the impact of socioeconomic, demographic, environmental,
health related and nutritional factors in under- five mortality of child. Firstly, data was
analysed using Kaplan-Meier, non-parametric method of estimation of survival
function and compared the survival time of different categories of region and other
covariates that influence the child survival. Cox proportional hazard model and
stratified Cox proportional model were also used to compare the hazard of under-five
mortality of child for different covariates comparison to the reference categories. The
potential covariates which influence under five mortality were region, mothers’
education level, sex, mothers’ age at first birth, preceding birth interval, contraceptive
use, breast feeding, place of delivery, number of antenatal visits during pregnancy and
father occupation. The study recommends that under-five mortality of child among
regions is significant. This is an indication that the risk of under-five mortality of child
varies from one region to another. Thus, in order to have a bearing on policy
recommendations, future studies should focus on identifying risk factors of under-five
mortality of child for each region of Ethiopia separately in high mortality area

(Getachew, 2016).
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A retrospective cohort study was conducted to determine the main factors that affect
under-five mortality in West Sulawesi using Intercensal Population Survey 2015. There
were 2549 cases in West Sulawesi. In this study, the impact of mother’s education, age
of first delivery, previous birth interval, birth type, the gender of the under-five child,
and paramedics help during labour were investigated using the Cox proportional hazard
regression. All variables impacted mostly to the survival rate of under-five children.
Female under-five children had a lower hazard (risk) of death compared to the males.
Twins had a 3 times higher hazard of death as compared to single born children. In
addition, higher mother’s education tends to have a lower hazard than those with lower

education (Nurmalasari et al., 2019).

The effect of antiretroviral therapy on survival of HIV and Tuberculosis (TB) infected
patients in Ukraine was assessed in prospective cohort study. The Kaplan-Meier
method was used to determine the survival of 80 patients and the effect of Highly Active
Antiretroviral Therapy (HAART) and survival was evaluated using Cox proportional
hazard models. From the results of the analysis, it was found that patients with CD4
cell count<100ul had 5-fold higher risk of mortality and those with pulmonary
tuberculosis with a 2-fold increased risk. Another assessment as to whether highly
active ART was associated with improved survival in critically ill HIV-infected patients
was conducted at the Saint-Louis teaching hospital in Paris, France. In this study,
multivariable logistic regression was used to identify risk factors for death. It was found
that five factors were independently associated with increased intensive care unit
mortality: delayed intensive care unit (ICU) admission, acute renal failure, hepatic

cirrhosis, admission for coma and severe sepsis (Mykhailo & Dmytro, 2013).
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The adherence to ART in Benin city and identification of the contributing factors in a
prospective study conducted on 125 out patients were assessed at the University of
Benin teaching hospital. The authors used logistic regression models to determine the
predictors of ART adherence relative to socio-demographic and clinical treatment
variables. The proportional data were compared using Chi-square test or fischer exact
at statistical significance of 95% confidence interval. The results from the findings
showed that poor financial status, medication adverse effects, lack of confidentiality,
occupational factors and stigmatisation were the major reasons given for ART non-

adherence (Ayalu et al., 2012).

The investigation on the relationship between tuberculosis infection and death in people
living with HIV and AIDS was conducted on 1575 subjects residing in both rural and
urban areas of Yala province in Thailand and were followed between January 1992 and
April 2010. Cox proportional hazard model was used to analyse the relationship and
the model reported statistically significant relationship in people living with HIV and
AIDS with tuberculosis and patients without tuberculosis. The people living with HIV
and AIDS with tuberculosis were more likely to live shorter compared to those patients

without tuberculosis after accounting for demographic factors.

The prospective study aimed at estimating the short-term disease progression among
people living with HIV was conducted in Asia and Pacific region. In this study, the
authors used Cox proportional hazard model to assess the predictors of disease
progression and prognostic models were developed using Weibull models. 1t was found
out in the analysis that the patients’ not on treatment had higher rate of disease

progression with 17.6 per 100 person-years against 8.1 per 100 person-years in the
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patients receiving antiretroviral treatment. The results showed that the baseline CD4
count was the strongest predictor of disease progression. The authors reported that
prognostic models were successful at identifying patients at high risk of short-term
disease progression. The study was conducted on the outcome of antiretroviral
treatment in rural public hospital in South nations, nationalities and people region in
Ethiopia. The study used historical retrospective cohort study for patients visiting from
January 1, 2005 to January 31, 2009. In the study, the authors used Kaplan-Meier
models to estimate mortality and Cox proportion hazard models to identify predictors
of mortality. It was found that the hazard of death was higher in males patients with

WHO stage IV at baseline compared to WHO stage | (Zhou & Kumarasamy, 2005).

The survival rate of people living with HIV and AIDS after receiving free antiretroviral
treatment was determined in Dehong Prefecture, Yunnan Province, China. A
retrospective cohort analysis was conducted on all the people living with HIV and AIDS
aged over 16 years who had started ART during January 2007 throughout December

2009 in Dehong Prefecture.

Assessing survival is not always an easy task. The choice of method is guided by the
type of survival data (e.g. collecting age at death or monitoring live individuals with
perfect or imperfect detection), the species life-history (e.g. single or numerous stages
or ages) and the environment it experiences (e.g. controlled conditions versus variable
environments). While it is relatively straightforward to gather survival data and assess
survival using simple models under controlled lab conditions (Klein, 2016), monitoring
survival in free-ranging populations often require more sophisticated capture-mark-

recapture (CMR) techniques to deal with imperfect detection of individuals (Williams
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et al., 2002). Indeed, survival data are often ‘incomplete’ in free-ranging populations,
timing and cause of death can be hard to assess and multiple environmental factors are
at play in influencing survival. Humans are an exception, with the existence of several
consequent databases with perfect knowledge of age and cause of death for several

human populations.

Survival analysis estimates and interprets survival functions as well as hazard functions
from time to event data. In addition, survival analysis can be used to compare survival
and hazard functions. It also helps to identify and asses the relationship of explanatory
variables to survival time. This helps practitioners to concentrate on areas that can help

improve people’s welfare thereby, improving their survival times.

2.5.1 Survival terminology

By definition, survival analysis involves the application of statistical procedures for
analysing data for which the outcome variable of interest is time until a study unit
experiences an event (Kleinbaum & Klein, 2010).

The survival function is the probability that the survival time is greater than t
(Kalbfleisch and Prentice, 2011).

Let T denote a random variable that describes survival time from ART initiation into

the study to death.

That is,
S(t) = P(T > 1), (1)
S(t) = 1- F(t),

where F(t) is the cumulative density function of the random variable T.

F(t) = P(T <t). (2)
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where F(t) = P(T <t) denotes the Cumulative Distribution Function (cdf) denoted as
F(t) informs the probability that length of time T is less than or equal to any given value

of t.

The probability density function is the slope of the cdf (failure function),

AF(b)

) = L0, 3)

s D(tsT<t+At)
f® = AI%Lno( At

Hence % is the probability of an individual dying in the interval (t, t+At). The survival

function S(t) and the failure function F(t) are and hence have the properties of
probabilities. It can be observed that, in particular, the survivor function lies between
zero and one and strictly decreasing function of t.

The survivor function is equal to one at the start of the follow up (t=0) and zero at

infinity. This implies that

0<S)<1, 4)
S(0)=1,

and that,
lim S(¢) = 0. (5)

Further, % < 0, and the density function is non-negative

f (t) >0. (6)

2.5.2 The hazard rate
The hazard rate gives the instantaneous failure rate at time given that an individual has
survived up to time t (Kalbfleisch & Prentice, 2011). The continuous time, hazard rate

is defined as,
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_f® _f®
(1) = 1-F(t)  S@©'

It can also be demonstrated that there is a clear relationship between hazard and

survival functions given as follows:

_ _f@®
H(t) - 1_F(t))

_ —ol-F®) .

_-o{-nls@)1}
a(t)

Integrating both sides gives the following:

[foadu =1 - F©)] |t

since F (0) =0 and In(1) = 0 then,

In[1 — F(t)] = In[S()] = — [, 6(W)du,

so that,
S(t) = exp (— f;@(u)du),
which becomes
S(t) = exp[-H(®)].
Then it follows that:
H(t) = [, 6(Wdu,
which is cumulative hazard function,
H(t) = —In[S(®)].
From this it can be observed that,
H(t) =0,

OH(t)
and ot H(t)
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2.5.3 The probability density function of survival time

The probability density function can be written as follows:

f(t) =0(t) exp (— fOtH(u)du),t > 0. (15)
The three functions outlined above are equivalent specifications of the distributions of
the survival time. The survival function is useful for comparing survival progress of
two or more groups. Among the functions of the survival analysis, the hazard function

provides useful description of the risk of failure at any time point.

2.5.4. Censoring

It is difficult to ascertain exact survival times for study participants that did not
experience an event of interest. Exact survival times can only be calculated for patients
with outcomes during or by the end of the study. In this case, patients without an
outcome are censored. Events can be left censored or right censored. In practice, most
survival data are right censored (Kleinbum & Klein, 2010). Therefore, analysis of such
data requires statistical methods that must consider a key analytical problem of
censoring, if survival functions of individuals are to be meaningful.

Where there is no censoring, the survival function can be estimated as

A~ N*
where N* denotes the number of individuals with survival times >t and

N denotes the number of individuals in the data set.

2.5.5 Cox regression model
Cox regression model is a semi parametric model which is popular in survival data
proposed by Cox (1972). The Cox model is defined as

h(t|x) = ho(t)exp(B1xy + -+ BpXxp), (16)
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where h(t|x) is the hazard function at time t for a subject with explanatory variables X=
(X1, Xo...XJ), ho(t) is the baseline hazard function, that is the hazard function when all
covariates equal to zero and B; is the regression coefficient for the i covariate. The
baseline can take any form (unspecified) but not negative. The Cox model assumes that
the hazard functions for the two different levels of a covariate are proportional for all

values of it and is given by:

h(telXK) _ ho(t)exp{B1 X1+ BpXkp}
h(tjlX;) ho(t)exp{B1X+BpXp} '

= exp{B1 (X1 — Xj1) + By (Xip — Xjp) } (17)

Hence h,(t) cancels out and this means that the ratio is the same at all-time points.

2.5.5.1 Assumption of the Cox model
The Cox model makes the following assumptions:
a) The structure of the model is assumed correct. That is for example, model is
multiplicative and all relevant covariates have been met.
b) The continuous covariates have a linear form.

c) The proportional hazards assumptions are satisfied.

2.5.5.2 Cox model popularity
The Cox model has the following key properties:
a) Itis robust hence a safe choice of model in many situations.
b) Estimated hazard are always non-negative.
¢) Even though ho (t) is unspecified, f;'s can be estimated and thus compute
the hazard ratio.
d) The hy(t|x) and S(t|x) can be estimated for a Cox model using a minimum of

assumption.
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The Cox proportional hazard model can fit by maximizing the likelihood function and
this procedure estimates the ho(t) and B. The popular approach is proposed by Cox
(1975) in which a partial likelihood also called Cox likelihood function that does not
rely on ho(t) is realized for g. The partial likelihood is a technique developed to make
inference about the regression parameters in the presence of nuisance parameter ho(t)
in the Cox PH model. Assume K different failure times tq), t)...tx such that there is

exactly one failure at each t;), i=1,....k . Let [i] denote the subject with an event time
t) and R(t) the risk set at time t, then the partial likelihood is given as:

My exp(BE_, BiXj)
Sierelj) exP b, BiXji)'

L(B) = (18)

The likelihood considers probabilities for subjects who fail and does not consider

probabilities for censored subject explicitly. The censored subjects are taken into
account in the risk set. The estimates of B’s is denoted by fi-s. The fi s solves:

dlogL .
—g=O,L=1

5; ) e e (19)

Therefore, ;s maximise the Cox likelihood.

2.6 Testing proportional hazard assumptions

The proportional hazard is the core assumption of the Cox model. There are a number
of procedures for ensuring that a model satisfies the assumption of proportionality
before the model results can be safely applied. The proportional hazard means that the
survival for two subjects have hazard functions that are proportional overtime (constant
relative). The proportional hazards (PH) assumption tests can be checked using

statistical tests and graphical diagnostics based on the scaled Schoenfeld residuals.
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If a variable violates PH assumption, Machin et al. (2006) recommends that a stratified
Cox PH regression model be fitted. This is because stratification controls the effect of

such a variable in a Cox model without making the PH assumption.

2.6.1 Statistical tests
2.6.1.1 Logrank method
Logrank test is used to find out whether the true survival curves differ from group to
group with hypothesis testing:

Ho: No differences between survival times curves

Hi: There is a difference between survival times
It consists of observed versus expected events. For example, letting t(;)<...<t, be r
distinct deaths times for each group. At time (j), let dj) and d¢j) be the number of deaths
in group I and I1 respectively, dj and dj) be the number of persons at risk prior to the
time t(). Then the log rank test statistic is:

o (g dij—Exi))?
Var

~x*(1), (20)

nld]'

where Ex;j = ~
j

The mean of the hypergeometric random variable and the variance of d,are given as,

nyjnyidi(myj—dj)
Var(dij) = ]nzjj({nj—i) / ’

where Var = Yi_; var(dy;). (Mantel, 1966)

2.6.1.2 Global test for the stratified
The global test for the stratified Cox model is an extension of the global test for the

ordinary Cox model (Goeman et al., 2005).
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Let us assume that n observations of q predictors are organized in a data matrix

XERMDwith elements X;;, further define R, = XX'. The stratified Cox model, the

j
hazard function of individual i at time t is,
hi () = hSD (t)exp(ry),
where h (), ..., 0™ () are the unknown baseline hazards of strata 1, ..., m and
r; = N, (B)xu, (21)
is the linear effect of the predictors.
Observing a sample of size n consisting of the predictor matrix X, follow-up times,
t = (ty, ., tn),
and status indicators
d=(dq,..,dy,).
We are interested in testing the null hypothesis that the predictors are not associated

with survival, i.e. the hypothesis testing that:

Ho:fy =+ = g = 0.

2.6.2 Graphical diagnostics
The Cox PH survival function can be obtained by the relationship between hazard
function and survival function,

S(t1X) = So(t) exp(Tisy i Xi). (22)
where X = (x4, x5, ..., Xi) is the value of the vector of predictor variables for a
particular individual. Taking the logarithm twice, we have

In[-In S(t] X)]= T, B, Xy +In[-InSe(t)].

It can be noted that the difference in log-log curves corresponding to two different
individuals with variables X; = (x11, 12 .- X1x) and X, = (x31, X2, ... X3k) IS given

by,
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In [-In S (] X1) - In S (1] X2] = T Bi(Xni — X20), (23)
which does not rely on t. By plotting estimated log (-log (survival) versus survival time
for the two groups, parallel curves would be realized if the hazards are proportional.
However, this method does not work well for continuous predictors or categorical
predictors that have many levels because the graph becomes “cluttered”. Moreover, the
curves are sparse when there are few time points and it may be difficult to gauge how

close to parallel is close enough.

2.6.2.1 Kaplan-Meier method

The Kaplan-Meier estimator, also known as the product limit, is an estimator for
estimating the survival function from lifetime data. It measures the fraction of patients
living for a certain amount of time after treatment (Kaplan & Meier, 2018). A plot of
the Kaplan-Meier estimate of the survival function is a series of horizontal steps of
declining magnitude which, when a large enough sample is taken, approaches the true
survival function for that population. The value of the survival function between
successive distinct sampled observations is assumed to be constant. The method is
defined as: let X;, X5, ..., X,, be independently identically distributed survival times
having distribution function F(x) and let G(c) be the distribution of independently
identically distributed censoring times Cy,C,, ..., C,. Let t; = min{X;, C;} is the
observed survival time and §, = I(X; < C;) indicate whether the survival time is censored
(0 =alive) or event (1 = dead). Let the number of individuals who are alive just before
time t; including those who are about to die at this time, be n; and d; denote the number
who die at this time. The Kaplan-Meier estimator is defined as:

n .—d. )0
[Ti=1((ni—dy)) ] (24)

ng
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The assumption of the Kaplan-Meier survival function is that the distribution of

censoring times is independent of exact survival times.

2.6.2.2 Deviance residuals
The deviance residuals (Therneau, Grambsch and Fleming, 1990) is defined by

rD; = sign(rx;[—2{rx; + 6; log(d; — rxi}]%, (25)
where the function sign (.) is the sign function which takes the values 1 if rx; is
positive and -1 if rx; if negative.

rx;=0; - ¢y,

is the martingale residuals for the i*"* individual, §; = 1 for uncensored observation and
&; = 0 for censored observation. The deviance residuals are normalized transformation
of the martingale residuals (Therneau et al., 1990). They have a mean zero but are
approximately symmetrically distributed about zero when fitted model is appropriate.

Very large or small value can indicate potential outliers.

2.6.2.3 Schoenfeld residuals

Schoenfeld residuals are computed with one per observation per covariate. It is only
defined at observed event times for the it" subject and k" covariate. The estimated
Schoenfeld residual 7y, (the covariate value for the individual that failed minus its
expected value) is given by,

P = X — ik,

where X;; is the value of the k" covariate for individual i and Xuik is the weighted mean
of covariate values for those in the risk set at the given event time. Positive value of
risk shows X value that is higher than expected at that death time. The Schoenfeld
residuals sum to zero.
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2.7  Adding time-dependent covariates in the Cox model
This is done by creating interactions of the predictors and a function of survival time.
Let X; be the predictor of interest, and creating X;(t) as a time-dependent covariate,
then

Xj=X; = g(t),
where g(t) is a function of time. The model assessing PH assumption for X; adjusted
for other covariates is:

h(t, (t)) = ho(Dexp[b1 Xy + by X, +...B;Xj + -+ BpXp + 6X; * g(1)],(26)
where X (t) = (xq, X2, X, x;(t)) is the value of predictor variables for a particular
individual. The null hypothesis to check proportionality is that, § = 0 where § is time
varying coefficient for X; covariate. The test statistic can be done using either a Wald
test or a likelihood ratio test. These statistics have chi-square distribution with one
degree of freedom under the null hypothesis. If the time—dependent covariate is

significant, then the predictor is not proportional.

2.8 Parametric survival models

Parametric survival models are regression models in which the distribution of the
response is chosen to be consistent with what one would see if the response is time to-
failure (Gutierrez, 2010). The parametric models are fitted to the survival data using
maximum likelihood method, the procedure is described as follows:

Suggesting that the survival times t,, t, ... t,, are observed and g of the n individuals die
at times t() <tz)...<t and that the survival times of the remaining n-q (q<n) individuals
are censored. If f(t) denotes the probability density function of the survival time t and

S(t) be the survival function then, the likelihood is given by,
ARG ()} (27)
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where, c is an indicator variable, taking value 0 when the survival time is censored and

1 for the uncensored survival time.

2.8.1 Weibull model
The Weibull distribution is the generalized version of the exponential distribution. It is
preferred for performing survival data analysis in industrial engineering (Rinne, 2020).
However, when implementations in the discipline of medicines are examined, one may
see that it is an important distribution model. It is a flexible distribution that allows
monotonous increasing and decreasing of mortality ratio in patients’ groups. In a study
carried by Viscomi et al. (2006), the distribution of the survival period of childhood
leukemia patients was analyzed using the Weibull distribution. In a study conducted in
Italy on the national wide estimations of the cancer patients, some estimations were
made for defining the parameters of Weibull distribution. The Weibull distribution has
the following functions:

h(t [x) =2, (28)
is the hazard rate, and the hazard function is given by,

h(t) = At, 1> 0,t > 0. (29)
The survival function is defined as:

S(t) = exp(-At). (30)
The probability density function for the exponential regression model is given by,

f (t) = Aexp(-At). (31)
The exponential model assumes that the baseline hazard is constant (Lawless, 2011).
Therefore, the hazard is given by,

h(tlx;)=exp(Bo+B1x;) - (32)

The survival function is given by,
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S(tlx;)=exp {-exp(Bo+B:ix:)}- (33)
Then the hazard function for a particular person with the explanatory variables

(%1, x2...Xp) IS given by:

h(tlx) = Ap(t)P~" exp(Brxy + By + -+ Bpixp) = Ap(£)P " exp(B x). (34)

2.8.2 Gompertz model
Gompertz model is used frequently by medical researchers and biologists in modeling
mortality ratio data (Wilson, 1994). The model was formulated by Gompertz. It has
these functions:
Hazard function:

h(t) = Aexp(yt), (39)
for 0>t<co where A is positive value and is the scale parameter and y is the shape
parameter. When g = 0 survival times have an exponential distribution, where y>0 the

hazard increases monotonically with time and when y<0 the hazard decreases with time.

ho(t) = Aexp(yt) exp(Bo) , (36)

the model now becomes:
h(tlx;)= ho(t)exp(x; Bx) t=exp(yt) px . 37)
The survival function is given by:
s(y=exp C)(L-exp (r0). (38)
The distribution is characterized by the fact that the log of hazard is linear in it. The
hazard function for a particular person using the Gompertz distribution is given by:
h(t|x) = Aexp(yt) exp(ﬁlx1 + Box, + -+ ﬁpxp) =

Aexp(BTx) exp(yt) .(39)
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2.8.3 Log-logistic model

The log logistic distribution is continuous for the random variable which is not negative
in probability and statistics. The mortality ratio in a life analysis slowly decreases after
it reaches to the maximum point over a finite period and it is suitable to use a non-
monotonic failure rate distribution model on the life and lost (Viscomi et al., 2006).
Zhou et al. (2007) conducted study in which he emphasized that the maximum
likelihood estimation was the most suitable method in estimating the parameters when
performing analyses using log logistic distribution on grouped data such as half
censored data.

These are the distributions functions for the log logistic:

AptP~inx
1+AtP

h(t) =

: (40)
is the hazard function, h(t) increases then decreases if p>1, monotonically decreases

when p=1, A gives information on the covariate,

A; = exp(x;B)

and the following function,

A =2 (41)
is the survival function.
The Accelerated Failure time for the log logistic regression:
At;= exp(-x; BX)t;, (42)
with t; ~ Loglogistic (Bo,7)
This has the cumulative distribution function,
F(0) =1~ [1+ {exp(~fo) t] ™" (43)
In (t;)=x;Bx + In(7;) = (Bo + x:fx + w;) (44)
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where y; follows a logistic distribution with mean 0 and the standard deviation,%. This

follows:
E{In(t;|x)} = [Bo + x;Bx]. (45)

The base line survivor functions of t; is given by,

1
So(t) =1+ [1+ {exp(—Bo) t:}]™*. (46)
Hence the effect of the covariates is to accelerate time by the factor of exp(—x;8x).

Then the Accelerated Failure time model is given by,

S(tilx;) = Solexp(—x;fx) t;}, (47)
= [1+ {exp(=Bo) exp(—x B},

= 1+ {exp(=Bo — xB2) £} (48)

2.8.4 Lognormal model

The lognormal is a skewed distribution where the average values are low, variances are
high and the values are not negative. The survival distributions of Hodgkin’s disease,
chronic leukemia were analyzed via lognormal distribution, indicated positively
skewed and with survival period distributed normally (Lee & Wang, 2003). In the
lognormal, the hazard function increases from 0 to reach maximum and then decreases

monotonically approaching 0 as t— co. The survival function is given by:
R(t) =1 - & "2} (49)
where @ is the standard normal cumulative density function and u = fx. The hazard

rate is given by:

1 1 In(t)—u?
tam exp [ 20.2{1_(1){111(1‘)—“}]1 (50)

and the hazard rate rises first then falls. The density function is given by:
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) = e [~ 5 (@) - 2] (51)
However, the lognormal has no proportional hazard interpretation. Hence, its
interpretation is in the AFT metric (Cleves, 2010). It assumes that ti ~lognormal (3, o)
and it has the cumulative distribution as given by:

F(t) = o =2 (52)
is the cumulative distribution function for the standard Gaussian(normal) distribution
hence,

In(t;) = x;Bx + In(1;). (53)
The lognormal model transforms time into In(time) and converts the problem into
simple linear regression:

E{ln(t;) |x;} = Bo + X (54)

The baseline survivor function is realized as:

So(t) = 1 — p=Foy (5)

2.8.5 Exponential model
This is the simplest parametric model. It assumes that the risk is constant over time. If
X is a random variable, the exponential distribution is defined as:
X~Exp(1),A > 0. (57)
The exponential distribution has a memoryless property which can be expressed as
Px<X<x+6|lX=x)=PX<56),
for a positive §. The probability to experience an event depends only on the length of
the interval. The probability density function is then
f(x) = e ™,

The survival function is:
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= e, (58)

2.8.6 Accelerate failure time model
The Accelerated Failure Time model is a linear regression model in which the response
variable is the logarithm or known monotone transformation of a failure time (Lee &
Wang, 2003). The accelerated failure time model describes a relationship between the
survivor function of any two individuals. Taking T; to be a random variable denoting
the failure time for the i*" subject, and let X;;, X;5, ..., Xip be the values of p covariates
of the subject. The model is then given by,

logT = {Bo + B1Xi1 + BpXip + b}, (59)
where ¢; ~ hy(t), & is a random disturbance term, f,...., B, and o are parameters to be
estimated, h,(t) is a known baseline survival, T; is actual survival times sometimes
observed is a scale parameter and X; is a fixed P*1 vector of covariates and X; is
assumed to affect log T linearly and no interactions. Moreover, o is assumed to be
constant and independent of X;. The parametric accelerated failure time distribution is
also assumed to be correctly specified. The survival function for the parametric baseline
accelerated failure model is given as,

S(t) = Sofexp(—X;"B) t, (60)
where S, (t) is the baseline. These accelerated failure time models are named for the

distribution of T rather than the distribution of e or log T. This is so because different
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distributions have different implications for the shapes or hazard function (Cox &

Oakes, 1996).

2.9  Assessment of the model fitness
When the model has been fitted, the adequacy of it needs to be assessed. There are a

number of ways to check the adequacy, like using Cox-Snell, deviance among others.

2.9.1 Cox -Snell residuals
The Cox-Snell residuals is given by Cox and Snell (Cox & Oakes, 1984). The residuals
for the i*" individual with the observed survival time ¢; is given as follows,

re = exp(BX;) Ho(ty) = H;(t) = —logS;(t;). (61)
Given that H, (t;) is an estimate of the baseline cumulative hazard function at time ¢t;
and it was derived by Kalbfleish and Pretence (1973).
Letting T be the continuous survival distribution S(t) with the cumulative hazard,

H(t) = - log(S(t)). (62)
Then it follows that,

Sr(t)=exp(-H(t)).

Taking Y = H(t) be the transformation of T based on cumulative hazard function. It
follows that the survival function for Y is now given as:

Sy =p(P >y) =p{H(t > )}, (63)
P(T > H;* () = Sr(Hy* () = exp(—Hr(H7*(¥)) = exp(=).
The new Y = H(t) has an exponential distribution with unit one. If the model is well
fitted, the actual value S;(t;) would have similar properties to those of S;(t;). Therefore
r.; = logS;(t;) will have a unit exponential distribution with f; = exp(—7).

Letting S(r) denote the survival function of Cox-Snell residuals r.;, then,
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Sk =, frexp(—x) dx = exp(-T), (64)
and it follows that,

Hg(r) = —logSg(r) = —log(exp) (-r) = (65)
Hence a plot of H(r,;) versus r,; is used to check the fit of the model. This gives a

straight line with a unit slope and zero intercept if the fitted model is correct.

2.10 Checking for model goodness of fit

There are a number of methods which are employed to check if a parametric distribution
fits the observed data. The Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC) a statistical criterion used for comparing models and residuals plots can

be used to check the goodness of fit for the models.

2.10.1 Bayesian Information Criterion (BIC)
Bayesian Information Criterion (BIC) is a criterion for model selection among a finite
set of models i.e. the model with the lowest BIC is selected. Can be calculated using
the following formula:

BIC =-2In (L) + In (n)*K,

where n=sample size, K=number of parameters and L=Log-likelihood.

2. 10.2 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) proposed in Akaike (1974) is a measure of the
goodness of fit of an estimated statistical model which compares the models which have
been fitted. The AIC is an operation way of trading off the complex of an estimated
model against how well the model fits the data. The AIC is defined by:

AIC = -2In (L) + 2k, (66)
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where L is the log likelihood, k is the number of covariates in the model. Lower values
of the AIC suggest a better model. However, there is a difficulty in using AIC in the
sense that there is no formal test statistically to compare different AIC values when two

or more models have similar AIC values.

2. 10.3 Residual plots
The residual plots can be used to check the goodness of fit of the model. Among the
useful plots is based on comparing the distribution of the Cox-Snell residuals with the
unit exponential distribution. The Cox-Snell residual for i** individual with observed
time, t; is defined as:

rei = H(t;|x;) = —log[$; ()], (67)
where t; is the observed survival time for individual i, x; is the vector covariate values
for individual i; and S;(t;) is the estimated survival function on the fitted model. The

estimated survival function for the i*" individual is given by,

A logt—j—ax;

5i(t) = Sei(———) (68)
where @, j1 and & are the maximum likelihood estimator of a, m and s respectively.

S¢i(€) is the survival function of ¢ in the Accelerated Failure Time model given by,

S(tilx;) = Sof{exp(—x;Bx) t;},

and

(logt—Aﬁ—&xi) =1, (69)

o

is referred to as standard residuals.
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CHAPTER 3

RESEARCH DESIGN AND METHODOLOGY

3.1  Study design
The study was a retrospective cohort. Data for under-five children living with HIV who
were on ART at Chiradzulu district hospital from July 2011 to July 2016 was analysed.

Events were censored by 31%, July 2016.

3.2 Study setting

The study used data collected at Chiradzulu District Hospital, Boma ART clinic in
Chiradzulu District. Chiradzulu has an estimated population of 356, 875 (NSO Malawi,
2018), with HIV prevalence of 9.2% (MDHS, 2017). Chiradzulu district was the site of
the first antiretroviral therapy (ART) program implemented in public facilities in
Malawi, early 2001. By the end of June 2021, ART register indicated that there were

over 28,500 patients at Boma ART Clinic.

3.3  Study population
Participants in this analysis were children under the age of five years who started

antiretroviral therapy from July 2011 to July 2016.

3.4  Data collection
The data analysed in this study were sourced from under five ART patient cards.
Authorization to use the data set was obtained through the Chiradzulu District Hospital

Research and Ethics Committee. Two clerical statisticians gathered the data from the
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patients’ ART cards (see appendix 1 and appendix 2) with the help from ART clinical
nurse. Guardians of under five children living with HIV were also traced and asked on
their level of education, occupation, marital status and confirmation on the place of
residence during clinic visits. Under-five children who were lost to follow up and alive

by the end of study were censored.

3.5 Variables description

3.5.1 Dependent variable
The primary outcome of the study was survival time measured in months from ART

initiation till death. The event of interest was death otherwise, right censored.

3.5.2 Independent variables

The study used pre-selected covariates based on the existing literature on the significant
determinants of child mortality. The covariates ranged from weight of a child in
kilograms (kg), height of a child in centimetres (cm), residence, sex for of a child,
mothers’ education level, mothers’ occupation status and mothers’ marital status.
Weight and height were considered because they help to determine whether a child is

having nutritious diet or not.

3.6  Statistical analyses

Statistical analyses were performed using the Stata version 14 software for windows.
The effects of the pre-selected variables were estimated using a Cox proportional
hazards model. The survival analysis to estimate the under-five mortality rate in

Chiradzulu was performed using parametric models and the study compared two
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survival analysis models, Cox and parametric models through the Akaike Information

Criterion (AIC). Kaplain Meier as well as logrank methods were also used.

3.6.1 Kaplan-Meier method
Kaplan meier method was used to produce graphs of the Kaplan-Meier estimates of the
survival function of under-five children for all preselected categorical variables:
residence, sex for child, mother’s education level, occupation status and marital status.
The Kaplan-Meier estimate is done on categorical variables only and its assumption is

that the distribution of censoring times is independent of exact survival times.

3.6.2 Logrank method
The logrank test was used to find out whether the true survival curves differ from group
to group through this hypothesis testing.

Ho: No differences between survival times curves

Hi: There is a difference between survival times
The test was applied to pre-selected categorical variables only to determine statistical

differences between groups.

3.6.3 Modelling strategies
3.6.3.1 Cox regression model
In this study, Cox regression model was used with the following covariates: X= (x1=
sex, X2 =residence, x3 = height, x4 = weight, xs = mother education, X¢ = mother
occupation, X7 = marital status). Let T denote a random variable that describes survival
time from ART initiation into the study to death where hy(t) is the baseline hazard

function. The Cox proportional hazard model fitted was:
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h(t) = hO (t) eﬁsex*sex+ﬁresidence*ReSidence tBheighe*Height+ Byeignt

* Weight + ﬁmother Education * Mother Education + ﬁmother occupation *

Mother Occupation + Bmarital status * Marital Status.

3.6.3.2 Cox proportional hazard assumptions testing
Scaled Schoenfeld residuals was used to test the proportional hazards assumption for
multivariable Cox regression model. A non-zero slope is an indication of violation of

the proportion hazard assumption.

3.6.3.3 Cox regression model goodness of fit test
The Cox model fit was evaluated using Cox —Snell residuals. If the hazard rate follows
the 45-degree line, it suggests that its approximation has an exponential distribution

with a hazard rate of one, and then the model fits the data well.

3.6.34 Parametric models
In the study, Weibull, Exponential, Gompertz, Loglogistics and Lognormal parametric
models were fitted. These were also compared with Cox proportional hazards model to
determine better model based on the decision of having a minimum Akaike Information

Criterion (AIC) value.

3.634.1 Weibull model
In this study, to estimate the effect size of covariates, Weibull model was fitted in the
following manner:
h(tlx) = Ap()P~" exp(Bsex * Sex + Bresidence * Residence + Bueigne *
Height + Byeigne * Weight + Bresidence * Residence + Biotner education *
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Mother Education + Bmother occupation *

Mother occupation+fmyarital status * Marital status).

3.6.34.2 Gompertz model

In this study, hazard function for an under-five child using the Gompertz distribution
was estimated by:

h(tlx) = Aexp(yt) exp(Bsex * Sex + Presidence * Residence + Breighe *
Height + Byeignt * Weight + Bmother education * Mother Education +

Bmother occupation * Mother occupation+PBmarital starus * Marital Status)-

3.6.3.4.3 Log-logistic model
An estimation of the effect size of covariates by log logistic model in this study was

fitted using the following formula:

1
h(t) = (1+At%)’

for x;: x; = Sex,x, = Residence,x; = Height,x, = Weight, xs =

Mother education, x, = Mother occupation and x, = Marital status.

3.6.34.4 Lognormal

The survival function for lognormal model in this study was fitted by:
In(t) —
h(t) =1-— @{y}'

where @ = standard normal cumulative density function and
U= Bx; for x; = Sex, x, = Residence,x3 = Height,x, =
Weight, xs = Mother education, x, = Mother occupation and x; =

Marital status .
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The lognormal model transforms time into In(time) and converts the problem into
simple linear regression:

E{In(t;) |x;} = Bo + Bxxi-

3.6.34.5 Exponential
In the study, the hazard function for the exponential model was fitted in the following

manner:

h(tlx) =2 exp(ﬁsex * Sex + Bresidgence * Residence + Breign: * Height +

Bweight * Weight + Bresidence * Residence + Biother education *

Mother Education + Bmother occupation * Mother occupation+fmarital status *

Marital status).

3.7  Model comparison
In this study the Akaike Information Criterion (AIC), a statistical criterion was used to

compare models.
3.7.1 Akaike Information Criterion (AIC)

This Akaike Information Criterion (AIC) was used in this study. Thus, the lower values

of the AIC suggested a better model.
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CHAPTER 4
RESULTS AND DISCUSSION

4.1  Exploratory Analysis

A total number of 186 under-five children living with HIV entered to this study. The
median age at ART enrolment was 3years. The median time to death for the under five
children living with HIV on ART was 16 months. Out of 186 under five children living
with HIV on ART, 56 (30.0%) died during the study while 130 (70.0%) were censored.
Out of 130 censored participants, 30 (16.15%) were lost to follow up and 100 (53.85%)
were alive by the end of the study. Table 1 shows a summary of descriptive statistics
for of under five children living with HIV on ART at Chiradzulu District Hospital,

Boma ART Clinic.
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Table 1: Descriptive summary of variables

Continuous
Variables

Age (years)
Weight (kg)
Height (cm)
Time to Death
(Months)

Categorical
variables

Sex
Male
Female

Residence
Semi Urban
Rural

Mother Education
No education
Primary school
Secondary school
Tertiary

Mother Occupation
Not working
Working

Marital Status
Single
Married
Divorced

Outcome Variables
Dead
Censored
Lost to follow up
Alive

Frequency Median

n (%)

84(45.16)
102(54.84)

77(41.4)
109(56.8)

34(18.28)
73(39.25)
64(34.41)

15(8.06)

98(52.69)
88(47.31)

72(38.71)
37(19.89)
77(40.40)

56(30.00)

30(16.15)
100(53.85)

3.00
10.00
96.00

16.00

Std.
Dev

0.91
8.16
16.04

414

Interquartile

Range
25th 75th
2.00 4.00
8.90 12.00
79.00 104.00
12.00 19.20

43




4.2  Log rank tests for categorical variables

The results of log rank tests showed that residence, mother education and mother
occupation were statistically significant. There were median survival differences in the
groups of these categorical variables. The logrank tests were applied to categorical

variables only.

4.3  Kaplan Meier survival curves for categorical variables

The Kaplan-Meier survival estimates results from Figure 1 have shown that under-five
children living with HIV whose mothers work have a better median survival rate as
compared to under-five children living with HIV on ART whose mothers do not work.
Similar results were obtained from residence (survival rate for under-five children was
better in urban than semi-urban) and mother’s education level (survival rate better in
under-five children with educated mothers as compared to under-five children with un-

educated mothers). The different median survival rates were observed in the categories.

Kaplan-Meier survival estimates by M__ occupation

LW
|

U.ro

V.29
I

T T T T T T

10 15
analysis time( in months)

Not working ~ ----------- Working l

Figure 1: Kaplan Meier survival curves for mothers’ occupation
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4.4  Cox proportional hazard model assumption tests

4.4.1 Proportional hazard test by scaled Schoenfeld residuals
In all the plots of scaled Schoenfeld residuals for all pre-selected covariates (weight,
height, residence, sex, mothers’ education level, occupation status and marital status),
there were almost flat lines being realised as illustrated in Figure 2 for mother’s
education levels. This is an indication that there was no violation of hazard

proportionality by all the variables.

Test of PH Assumption
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N —
H —
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1) 8
8 S ° 8
o —
‘/\l/' — [}
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o
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8 o °
(\Il -
T T T T T
5 10 15 20 25
Time
bandwidth = .8

Figure 2: Graph of Scaled Schoenfeld residuals for Mothers’ Education levels
The rest of the variables yielded similar graph results as of scaled Schoenfeld residuals

for mother’s education levels.

4.4.2 Cox Model bivariate and multivariate analysis
Table 2 indicates risk factors associated with survival rate of under-five children on
antiretroviral therapy at Chiradzulu district hospital.
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Table 2: Cox proportional hazards model: risk factors of under-five mortality

BIVARIATE MULTIVARIATE
COVARIATE HR 959% CI AHR 959% ClI
Sex

Male (Reference)
Female 1.40 [0.67, 2.94]
Residence
Semi Urban (Reference) Reference
Rural 2.23 [1.95, 5.23] 1.88 [1.79, 4.50]
Mother
Education
No Education (Reference) Reference
Primary 0.90 [0.39, 0.99] 0.93 [0.40, 0.95]
Secondary 0.34 [0.11, 0.65] 0.37 [0.10, 0.85]
Tertiary 0.00 - - 0.00 -

Mother

Occupation
Not working (Reference) Reference
Working 0.37 [0.16, 0.83] 0.92 [0.32, 0.99]

Marital Status
Single (Reference)

Married 0.89 [0.32, 2.35]

Divorced 0.75 [0.33, 1.72]
Weight 0.85 [0.71, 0.91] 0.86 [0.72, 0.98]

Height 0.99 [0.97, 1.01]

Under five children living with HIV from rural areas were significantly associated with
higher hazard of mortality than the hazard of under five children living with HIV from
semi-urban areas in both bivariate analysis (HR: 2.23; 95% CI: 1.95, 5.23) and

multivariate analysis (AHR: 1.88; 95% CI: 1.79, 4.50).
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Under-five children living with HIV whose mothers have primary education were
significantly associated with lower hazard of death than under-five children living with
HIV whose mothers are not educated in both bivariate analysis (HR=0.34; 95% Cl=
0.39, 0.99) and multivariable analysis (AHR: 0.93; 95% CI: 0.40, 0.95). Under-five
children living with HIV whose mothers have secondary education are significantly
associated with lower hazard of mortality than under-five children living with HIV
whose mothers are not educated in both bivariate analysis (HR=0.34; 95% CI= 0.11,
0.65) and multivariable analysis (AHR: 0.37; 95% CI=0.10, 0.85). Under-five children
living with HIV whose mothers have tertiary education had 100% lower hazard of
mortality than under-five children living with HIV whose mothers are not educated in

both bivariate analysis (HR=0.0)and multivariable analysis (AHR: 0.00).

The hazard of death was less for under-five children living with HIV whose mothers
work by a factor of (HR: 0.37; 95% CI: 0.16, 0.83) and (AHR= 0.92; 95% CI: 0.32,
0.99) for bivariate and multivariate respectively as compared to under-five children

living with HIVV whose mothers do not work.

Finally, weight was significant in both univariate analysis (HR = 0.85; 95% CI= 0.71,
0.91) and multivariable analysis (AHR =0.86; 95% CI=0.72, 0.98). For each additional
kg of weight, the hazard of death in under-five children living with HIV reduces by 9%

and 14% in bivariate and multivariable analyses respectively.

The estimated multivariable Cox Proportion hazard model became:

h(tlx) = ho(t) eXp(lel,l + B2x2 + B3xs g + Bsxzs + Bsxza + Bex4,2)a
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where
ho(t) = Baseline hazard,x,, = Weight , X2, = Rural, X3, =
Primary Education, x33 = Secondary Education, x3, = Tertiary Education

& x,, = Working

4.4.3 The goodness of fit for the Cox model
As illustrated in figure 3, the hazard rate of the Cox —Snell residuals for under five
children on ART follows the 45-degree line. This suggests that the model fitted the data

well.

T T T T T
o 1 2 3 4
Cox-Snell residual

Nelson-Aalen cumulative hazard Cox-Snell residual

Figure 3: The goodness of model fit for Cox model

Overall, the final model fitted the data very well as illustrated in Figure 3.

4.5 Parametric models fitting

Tables 3 and 4 illustrates the hazard ratio estimates for parametric models in the
analysis of bivariate and multivariable regression models. Table 5 illustrates the effect
sizes of covariates in the parametric regression model of the multivariable analyses

while Table 6 shows estimates for parametric model parameters.
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Table 3: Bivariate Parametric regression models with hazard ratio estimates

Weibull Exponential Gompertz Loglogistic Lognormal
Covariate HR 95% CI [HR 95% CI [HR 95% CI |Coeff 95% CI |Coeff 95% ClI
Weight 0.83  [0.68,0.98]/0.80 [0.66, 0.94]/0.83 [0.70, 0.99] 0.07 [0.01, 0.15]|0.08 [0.01, 0.16]
Residence
Semi-Urban|Reference Reference Reference Reference Reference
Rural2.22  [1.95, 5.20])2.22 [1.95, 5.21]|2.24 [1.96, 5.24]/-0.30 [-0.64, -0.04]|-0.32 [-0.68, -0.04]
Education
No|Reference Reference Reference Reference Reference
Primary|0.91  [0.40, 0.99]0.81 [0.36, 0.99]/0.96 [0.42,0.98] 0.04 [0.01, 0.40] | 0.04 [0.01, 0.55]
Secondary|0.55  [0.36, 0.86]/0.51 [0.33, 0.81]|0.57 [0.37, 0.87]| 0.24 [0.04, 0.44] | 0.28 [0.06, 0.49]
Tertiary|0.00  [0.00, 0.00]/0.00 [0.00, 0.00]/0.00 [0.00, 0.00]/5.898 [1.98,8.7] |3.49 [2.16, 5.13]
Working Status
Not Working|Reference Reference Reference Reference Reference
Working/0.39  [0.17, 0.87]0.41 [0.18, 0.92](0.38 [0.17, 0.86]| 0.34 [0.02, 0.66] | 0.32 [0.23, 0.67]
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The results from the fitted bivariate regression models in Table 3 have indicated that the
continuous variable, weight, categorical variables residence (semi-urban and rural), mothers’
education level (no education, primary, Secondary, tertiary) and mother’s occupation (not
working and working) significantly affect the survival rate of under-five children on

antiretroviral therapy.
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Table 4: Multivariable Parametric regression models with hazard ratio

Weibull Exponential Gompertz Loglogistic Lognormal
Coef Coef
Covariate HR 95% ClI HR 95% ClI HR 95% ClI f 95% ClI f 95% ClI
0.8 [0.71, 0.8 [0.69, 0.8 [0.71, [0.01,
Weight 4 0.99] 1 0.96] 4 0.92] 0.07 [0.01,0.15] | 0.07 0.15]
Residence
Semi-Urban | Reference Reference Reference Reference Reference
1.9 [1.11, 1.9 [1.01, 1.9 [1.11, [-0.62, - [-0.63, -
Rural | 4 4.61] 2 4.54] 3 4.59] -0.25 0.11] -0.25 0.13]
Education
No | Reference Reference Reference Reference Reference
0.9 [0.10, 0.8 [0.36, 0.9 [0.42, [0.37,
Primary | 1 0.99] 1 0.98] 6 0.99] 0.04 [0.32,0.40] | 0.04 0.45]
0.3 [0.09, 0.3 [0.09, 0.3 [0.10, [0.11,
Secondary | 4 0.99] 1 0.75] 6 0.85] 0.42 [0.14,0.98] | 0.46 1.03]
0.0 [0.00, 0.0 [0.00, 0.0 [0.00, [0.16,
Tertiary | O 0.00] 0 0.00] 0 0.00] 5.898 [1.98,9.77] | 3.49 5.13]
Working
Status
Not Working | Reference Reference Reference Reference Reference
0.9 [0.34, 1.0 [0.36, 0.9 [0.85, [-0.45, - [-0.52, -
Working | 9 2.85] 0 2.82] 8 0.99] -0.01 0.43] -0.07 0.38]
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The results from the fitted univariate regression models in Table 4 shows the association of
covariates by hazard ratio of continuous variable, weight and categorical variables residence
(semi-urban and rural), mothers’ education level (no education, primary, secondary and

tertiary) and mother’s occupation (not working and working).
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Table 5: Parametric model coefficient estimates

Weibull Exponential Gompertz Loglogistic Lognormal
Covariate HR 95% CIl | HR 95% CIl | HR 95% CI | Coeff 959% CI Coeff 959% CI
[0.71, [0.69, [0.71,
Weight 0.84 0.99] 0.81 0.96] 0.84 0.92] 0.07 [0.01,0.15] | 0.07 [0.01, 0.15]
Residence
Semi-Urban | Reference Reference Reference Reference Reference
[1.11, [1.01, [1.11, [-0.62, - [-0.63, -
Rural | 1.94 4.61] 1.92 4.54] 1.93 4.59] -0.25 0.11] -0.25 0.13]
Education
No | Reference Reference Reference Reference Reference
[0.10, [0.36, [0.42,
Primary | 0.91 0.99] 0.81 0.98] 0.96 0.99] 0.04 [0.32,0.40] | 0.04 [0.37, 0.45]
[0.09, [0.09, [0.10,
Secondary | 0.34 0.99] 0.31 0.75] 0.36 0.85] 0.42 [0.14,0.98] | 0.46 [0.11, 1.03]
[0.00, [0.00, [0.00,
Tertiary | 0.00 0.00] 0.00 0.00] 0.00 0.00] 5.898 [1.98,9.77] | 3.49 [0.16, 5.13]
Working
Status
Not Working | Reference Reference Reference Reference Reference
[0.34, [0.36, [0.85, [-0.45, - [-0.52, -
Working | 0.99 2.85] 1.00 2.82] 0.98 0.99] -0.01 0.43] -0.07 0.38]
[0.00, [0.01, [0.00,
Cons | 0.00 0.01] 0.08 0.44] 0.01 0.06] 2.65 [1.55,3.74] | 2.70 [1.51, 3.90]
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Table 5 shows the estimated effect sizes of the covariates through Weibull, Exponential, Gompertz Loglogistic and Lognormal fitted

models.

Table 6: Coefficient estimates for parametric model parameters

Weibull Exponential Gompertz Loglogistic Lognormal
Parameter | Coeff 95% CI | Coeff  95% CI | Coeff 95% CI | Coeff 95% CI | Coeff 95% CI
n_p 0.96 [0.63, 1.29] - - - - - - - -
p 2.60 [1.87,3.62] | - - - - - - - -
1/p 0.38 [0.28,0.53] | - - - - - - - -
/gamma - - - - 0.18 [1.00,0.25] | - - - -
/In_gam - - - - - - -1.00  [-1.32,-067] | - -
gamma - - - - - - 0.37 [0.27,051] | - -
/In_sig - - - - - - - - -0.29 [-0.58, -0.00]
sigma - - - - - - - - 0.75 [1.00, 0.56]

Table 6 shows the coefficients of parameters for Weibull, Exponential, Gompertz, Loglogistic and Lognormal models except Exponential

model. The Exponential model does not have parameters. The parameter estimates provides shapes and location for the graphs.
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46  Comparison of Cox and parametric survival models

In this study the Akaike Information Criterion (AIC), a statistical criterion was applied.

4.6.1 Akaike Information Criterion (AIC)

The study used the Akaike Information Criterion to select the best fit model among cox
and parametric models which were fitted. Weight, residence, mothers’ education level
and mother’s occupation were used in final model. Table 7 shows AIC statistics for the

five parametric models and Cox model.

Table 7: AIC values for parametric and Cox models

Model Observation  ll(null) II(Model) df AlC

Weibull 186 -77.18 -68.90 6 149.80
Exponential 186 -89.86 -80.13 5 186.39
Gompertz 186 -76.73 -68.76 6 149.53
Loglogistic 186 -77.69 -70.08 6 152.15
Lognormal 186 -78.22 -70.90 6 153.80
Cox 186 -133.39 -125.74 4 259.48

Table 7 illustrates Gompertz model with lowest AIC value of 149.53. With the
achievement of the lowest AIC value (149.53), Gompertz is the proposed model for
predicting survival of under-five children living with HIV on ART in Chiradzulu
district. Gompertz model became:

h(tlx;) = Aexp(y) exp(B1x1,1 + B2X22 + PsXz2 + PsXz3 + PsXza + BeXa2),

where
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Yy = shape parameter, A = location parameter, x; ; = Weight, x,, =
Rural, x5, = Primary Education, x3 3 = Secondary Education, x5, =

Tertiary Education, x,, = Working

As illustrated in figure 4, a graph of Gompertz survival function shows that 70% of

under five children who were on ART survived during the study.

Gompertz regression

15
analysis time(months)

Figure 4: Gompertz survival rate graph for under-five children

4.2 Discussion

Apprehension of the survival patterns of under-five ART patients and determinants for
survival is important to the development and implementation of HIVV programmes for
under five children hence, there is a clear need for local evidence about the burden of

disease in childhood as well as determining best models for data analysis.

This study demonstrated that parametric models are best models as compared to the
Cox model. This concurs with previous studies conducted by (Nardi et al., 2003). This
is on the grounds that parametric models (Exponential, Weibull, Gompertz, lognormal

and loglogistic), especially Gompertz model had a smallest AIC value among
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Exponential, Weibull, lognormal and loglogistic while Cox model had the largest value.
Akaike Information Creterion (AIC) recommends choosing the model with the lower
AIC without stating the magnitude of the difference (Akaike, 1974). This result also
correlates report by Stanley et al. (2016). The study found that parametric models have
better performance than the Cox models. In addition, the adequacy of the Gompertz
model was assessed using Cox- Snell residuals as illustrated in figure 3. The results
showed that the hazard function followed the 45-degree line very closely. This implies
that the Gompertz model is an appropriate and worth model to be used for modelling

the survival of under-five children living with HIV on ART in Chiradzulu district.

Another objective of this study was to examine the extent to which risk factors influence
the survival of under-five children living with HIV on ART in Chiradzulu district. The
results suggest that the hazard of death for under-five children who are on ART depends
greatly on a number of socio-economic, demographic and health-related variables, such

as place of residence mother educational level, occupation status and weight of child.

The study suggests that mortality rates are higher in rural areas. This concurs with
previous studies in and outside Nigeria (Morakinyo et al., 2017). This is on the ground
that those living in the urban areas have access to improved water supply, improved
sanitation facilities, unlimited access to healthcare as well as other social and economic
services (Dejene et al., 2013). This finding also correlates with result reported in
previous study (Adekambi et al., 2011). Rural areas are usually far away from health

facilities hence poor health care services.
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Occupation of mother is also another factor influencing under-five child survival rate
in this study. The study found evidence that mortality risk might be lower in group of
under-five children with working mothers as compared to the group of under-five
children with non-working mothers. This was consistent with the findings by (Bello et
al., 2014). The households with working mothers have better housing conditions, better
nutrition, more empowerment and hence, they may be able to afford better medical
attention and care thus, significantly enhancing the survival rate of all their children

(Wegbom et al., 2019).

The study also discovered that under-five children living with HIV with low body
weight are associated with increased hazard of death. As found in another study, the
greatest risk of mortality occurred in the first 12 months of treatment (Gesesew, 2018)
among children who were underweight at ART initiation and among infants (Mutanga,
2019). These under-five children with more weight have better nutrition as compared

to those under five children with low body weight (Johannes Sen et al., 2008).

Finally, mother’s education had a significant relationship with child survival rate in this
study. Higher risks of death for under-five children were identified among the
uneducated mothers as compared to educated mothers (mothers with primary,
secondary and tertiary education). This is consistent with the findings by Khan and
Awan (2017). A possible explanation could be that educated mothers have better
socioeconomic status, better knowledge on family health and childcare, preventive
care, effective use of modern health services and good management of child illness
(Caldwell, 1994). Education additionally changes the customary and social family

relationships as regards decision making and engages the mothers in several issues like
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childcare which plays a role in reducing child mortality (O’Toole, 1994). Higher
mother’s education tends to have a lower hazard than those with lower education and
mothers with higher education have a higher desire to seek information or knowledge

about health care (Nurmalasari et al., 2019).
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CHAPTER 5
CONCLUSION AND RECOMMENDATIONS

51  Conclusion

The findings from this study have essential district policy implications, particularly in
monitoring public health interventions which need to ensure a consistent decline in
child mortality rates towards the achievement of the SDG 3. The study analysed and
then, identified the socioeconomic, geographical and health-related factors that might
influence the survival rate of under-five children on antiretroviral therapy in
Chiradzulu. The results from the analyses showed that mother educational level,
occupation status, place of residence and weight of a child during antiretroviral therapy
might influence the survival rate of under-five children in Chiradzulu. These findings
suggest that under-five survival rate is greatly associated with socio-economic,
geographical and health related factors. The study determined Gompertz, a parametric
model, as the best model for predicting survival rate of under-five children on

antiretroviral therapy as compared to Cox model.

5.2 Recommendations

Recommendations from this study are that, it is necessary for the readers to understand
the identified factors influencing the survival rate of under five children to be directions
for future studies with plans to design study procedures that can explain confounders.
Further still, this study’s data is from Chiradzulu district hence, it is recommended that
these results should be substantiated by similar survival studies from other parts of the

district to generalize the results to other individuals in the country. Finally, researchers
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should check the underlying assumptions of Cox model before using it in order to use

a proper models during analysis.
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APPENDICES
APPENDIX 1: Commands for data analysis

use "F:\New folder (7)\RESEARCH
CONCEPT\WORKING\THESIS\Revised_Dataset 14Nov2019.dta"
stset Time_months , failure( Died )

summarize Time_months

summarize Time_months, detail

sts graph, na

**Distribution graphs

histogram Age_0, freq normal

histogram Weight 0, freq normal

histogram Height_0, freq normal

stvary //checking time varying variables
**Descriptive

tab Sex

tab Residence

tab M_Education

tab M_Occupation

tab Marital_Status

tab Died

—

tabstat Age_0, statistics (mean median sd igr)
tabstat Weight_0, statistics (mean median sd iqr)
tabstat Height_0, statistics (mean median sd iqr)
——

sum Age_0, detail

sum Height_0, detail

sum Weight_0, detail

**Defining variables

label define Sex 1 "Male" 2 "Female"

label values Sex Sex
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label define Residence 1 "Semi Urban" 2 "Rural”

label values Residence Residence

label define Mother_Education 1 "No Education " 2 "Primary Education™ 3
"Secondary Education™ 4 "Tertiary"

label values M_Education Mother_Education

label define Mother_Occupation 1 "Not working" 2 "Working"

label values M_Occupation Mother_Occupation

label define Marital_Status 1 "Single" 2 "Married" 3 "Divorced"
label values Marital _Status Marital_Status

**Table 4.1 Descriptive Summary of Explanatory Variables
tab Sex Died, row

tab Residence Died, row

tab M_Education Died, row

tab M_Occupation Died, row

tab Marital _Status Died, row

sum Age_0, detail //report mean and standard deviation
sum Height_0 , detail /report mean and stsndard deviation

sum Weight 0, detail //report mean and stsndard deviation

**Table 4.2 Association between Death and Covariates
tab Sex Died, chi2

tab Residence Died, chi2

tab M_Education Died, chi2
tab M_Occupation Died, chi2
tab Marital_Status Died, chi2
ttest Age_0, by(Died)

ttest Height_0, by(Died)

ttest Weight_0, by(Died)

tab Age 0 Died, chi2

sts test Residence, logrank
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sts graph, by(Residence)

sts test Sex, logrank
sts graph, by(Sex)

sts test M_Education, logrank

sts graph, by(M_Education)

sts test M_Occupation, logrank

sts graph, by(M_Occupation)

sts test Marital_Status, logrank

sts graph, by(Marital_Status)

//Cox Proportional Hazard Models with one predictor variables
stcox Age_0, nohr

stcox Height_0, nohr

stcox Weight_0, nohr

//Model Building

IIUNIVARIATE COX PROPORTIONAL HAZARD MODELS /
stcox Sex

stcox Residence

stcox Age 0

stcox Height 0

stcox Weight_0

stcox M_Education

stcox M_Occupation

stcox Marital_Status

stcox 1.Sex

stcox i.Residence
stcox Age 0
stcox Height_0
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stcox Weight 0

stcox i.M_Education
stcox i.M_Occupation
stcox i.Marital_Status

stcox Residence, nohr
stcox M_Education, nohr

stcox M_Occupation, nohr

/IMULTIVARIATE COX PROPORTIONAL HAZARD MODELS
stcox i.Residence i.M_Education i.M_Occupation Weight_0, nolog
stphplot, by(Residence)

stcoxkm, by(Residence) separate legend(cols(1))

stcoxkm, by(M_Education) separate legend(cols(1))

stphplot, by(M_Education)

stphplot, by(M_Occupation)

stcoxkm, by(M_Occupation) separate legend(cols(1))

/[Tests of proportionalhazards assumption
stcox Weight_0 Residence, nolog

estat phtest, detail

stcox Weight_0 M_Education, nolog
estat phtest, detail

stcox Weight_0 M_Occupation, nolog
estat phtest, detail

/ICox AIC test
stcox Weight_0 Residence M_Education M_Occupation, nolog

estat ic

/Imultilevel GLOBAL TEST
stcox Weight_0 i.Residence i.M_Education i.M_Occupation, nolog
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estat phtest, detail

[/[COMPARING PARAMETRIC SURVIVAL MODELS UNIVARIATE
streg Weight 0, distribution(weibull)

streg Weight_0, distribution(exponential)

streg Weight_0, distribution(gompertz)

streg Weight 0, distribution(loglogistic)

streg Weight 0, distribution(lognormal)

streg Age_0, distribution(weibull)
streg Age_0, distribution(exponential)
streg Age_0, distribution(gompertz)
streg Age_0, distribution(loglogistic)
streg Age_0, distribution(lognormal)

streg Height_0, distribution(weibull)
streg Height_0, distribution(exponential)
streg Height_0, distribution(gompertz)
streg Height_0, distribution(loglogistic)
streg Height_0, distribution(lognormal)

streg i.Sex, distribution(weibull)
streg i.Sex, distribution(exponential)
streg i.Sex, distribution(gompertz)
streg i.Sex, distribution(loglogistic)

streg i.Sex, distribution(lognormal)

streg i.Residence, distribution(weibull)

streg i.Residence, distribution(exponential)
streg i.Residence, distribution(gompertz)
streg i.Residence, distribution(loglogistic)
streg i.Residence, distribution(lognormal)
streg i.M_Education, distribution(weibull)
streg i.M_Education, distribution(exponential)
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streg i.M_Education, distribution(gompertz)
streg i.M_Education, distribution(loglogistic)
streg i.M_Education, distribution(lognormal)

streg i.M_Occupation, distribution(weibull)
streg i.M_Occupation, distribution(exponential)
streg i.M_Occupation, distribution(gompertz)
streg i.M_Occupation, distribution(loglogistic)

streg i.M_Occupation, distribution(lognormal)

streg i.Marital_Status, distribution(weibull)
streg i.Marital_Status, distribution(exponential)
streg i.Marital_Status, distribution(gompertz)
streg i.Marital_Status, distribution(loglogistic)

streg i.Marital_Status, distribution(lognormal)

/ICOMPARING PARAMETRIC SURVIVAL MODELS MULTIVARIATE //
streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(weibull)
nolog

estat ic

streg Weight 0 i.Residence i.M_Education i.M_Occupation, distribution(exponential)
nolog
estat ic

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(gompertz)
nolog

estat ic

streg Weight_0 Residence i.M_Education i.M_Occupation, distribution(loglogistic)
nolog

estat ic

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(lognormal)

nolog

75



estat ic

/Iwith coefficient estimates

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(weibull)
nohr

streg Weight_0 i.Residence i.M_Education i.M_Occupation,
distribution(exponential)nohr

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(gompertz)

nohr

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(loglogistic)
nolog
streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(lognormal)

nolog

/Ito select the best model fit the model and type

estat ic

/Ischonfeld test

quietly stcox Weight_0 Residence M_Education M_Occupation, schoenfeld(sch*)
scaledsch(sca*)

stphtest, detail

stphtest, plot(Weight_0) msym(oh)

stphtest, plot(Residence) msym(oh)

stphtest, plot(M_Education) msym(oh)

stphtest, plot(M_Occupation) msym(oh)

//IGoodness of fit cox model

quietly stcox Weight_0 Residence M_Education M_Occupation, nohr mgale(mg)
predict cs, csnell

stset cs, failure(Died)

sts generate H = na

line H cs cs, sort xlab(0 1 to 4) ylab(0 1 to 4)

drop mg
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/I survival function

stcox Weight_0 Residence M_Education M_Occupation, nolog

stcurve, survival

stcurve, survival atl(Weight_0=1) at2(Residence=2) at3(M_Education=3)
at4(M_Occupation=4)

Ipattern(solid dash dot)

stcurve, cumhaz

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(gompertz)
stcurve, survival
stcurve, hazard

stcurve, cumhazard
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APPENDIX 2: ART patient card, front




APPENDIX 3: ART patient card, back
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APPENDIX 4: Support letter from Chancellor College
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PRINCIPAL CHANCELLOR COLLEGE
Prof. Richard Tambulasi, B.A (Pub Admin), BPA (Hons), MPA, Ph.D P.O. Box 280, Zomba, Malawi
Our ref: CC/PFIAC Telephone: (265) 524 222

Your ref: Fax: (265) 524 046

E-mail: principal@cc.ac.mw

2nd July 2019

The District Health Officer
Chiradzulu District Hospital
CHIRADZULU.

Dear Sir/Madam

REFERENCE LETTER FOR MR AUBREY JAZZA (MSC/STAT/02/14)

| write this reference letter for Mr Aubrey Jazza who is our Master of Science in
Biostatistics student in the Mathematical Sciences Department, under the Faculty of
Science, Chancellor College.

He is currently writing a research proposal titled, “Survival of Under - Five HIV/Aids
infected Children taking antiretroviral therapy at Chiradzulu District Hospital: a
comparison of stratefied Cox Regression and Extended Cox Regression
Models" so he would like to collect data in your organization. Please note that this
research is for academic purpose only and therefore any research ethics of confidentiality
shall be honoured by the student and the department.

Any assistance rendered to him will therefore be highly appreciated.

Yours faithfully

= B
et

¢80 Dr Mwawi Nyirenda-Kayuni
HEAD, MATHEMATICAL SCIENCES DEPARTMENT
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