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ABSTRACT 

The hazard of a child dying before reaching 5 years is highest in sub-Saharan African 

countries including Malawi, with elevated risk in rural areas. Chiradzulu district has a 

higher under-five mortality rate as compared to a national average mortality rate for 

Malawi. The main aim of the study was to model and determine survival patterns of 

under-five children living with HIV who were on antiretroviral therapy. Using 

retrospective secondary data for 186 cases of under five children on anti-retroviral 

therapy, collected from July 2011 through July 2016, both Cox and parametric models 

were analyzed. The effect of the following covariates were investigated: Weight, 

height, sex, residence, mother’s occupation, mother’s education level and mother’s 

marital status. Weibull, exponential, Gompertz, loglogistic and lognormal regression 

were performed as parametric models and Cox as a semi-parametric model. Akaike 

Information Criterion (AIC) was used to compare the efficiency of fitted models. 

Residence, mother’s education level, mothers’ occupation and weight factors 

influenced the survival of under-five children living with HIV in Chiradzulu District. 

During the study, 56 (30.0%) of the participants died. Gompertz model was found to be 

the best fit model for predicting survival of under-five children living with HIV on 

antiretroviral therapy in Chiradzulu district. It is recommended that the results should 

be substantiated by similar survival studies from other parts of the district to generalize 

the results to other individuals in the country. Researchers should check the underlying 

assumptions of Cox model before using it in order to use a proper model during 

analysis.   

 



vii 
 

 

 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................. vi 

LIST OF TABLES ......................................................................................................... x 

LIST OF FIGURES ...................................................................................................... xi 

APPENDICES ............................................................................................................. xii 

LIST OF ABBREVIATIONS AND ACRONYMS ................................................... xiii 

CHAPTER 1 .................................................................................................................. 1 

INTRODUCTION ......................................................................................................... 1 

1.1 Background and history .......................................................................................... 1 

1.2 HIV prevalence in Chiradzulu ................................................................................ 3 

1.3  Problem statement .................................................................................................. 4 

1.4 Study objectives ........................................................................................................ 5 

1.5 Significance of the study .......................................................................................... 6 

1.6 Definition of terms ................................................................................................... 7 

1.7 Structure of this thesis ............................................................................................. 7 

CHAPTER 2 .................................................................................................................. 8 

LITERATURE REVIEW .............................................................................................. 8 

2.1 Introduction .............................................................................................................. 8 

2.2 HIV and AIDS in East and Southern Africa ......................................................... 8 

2.3 HIV and ART provision in Malawi ...................................................................... 10 

2.4 Scaling-up antiretroviral therapy in Malawi ....................................................... 11 

2.5 Theory of analysis for survival data ..................................................................... 11 

2.5.1 Survival terminology ....................................................................................... 16 

2.5.2 The hazard rate ............................................................................................... 17 

2.5.3 The probability density function of survival time .......................................... 19 

2.5.4.  Censoring ........................................................................................................ 19 



viii 
 

2.5.5 Cox regression model ...................................................................................... 19 

2.6 Testing proportional hazard assumptions ........................................................... 21 

2.6.1 Statistical tests ................................................................................................. 22 

2.6.2 Graphical diagnostics ..................................................................................... 23 

2.7 Adding time-dependent covariates in the Cox model ......................................... 26 

2.8 Parametric survival models................................................................................... 26 

2.8.1 Weibull model .................................................................................................. 27 

2.8.2 Gompertz model ............................................................................................... 28 

2.8.3 Log-logistic model ........................................................................................... 29 

2.8.4 Lognormal model ............................................................................................ 30 

2.8.5 Exponential model .......................................................................................... 31 

2.9 Assessment of the model fitness ............................................................................ 33 

2.9.1 Cox –Snell residuals ........................................................................................ 33 

2.10 Checking for model goodness of fit ...................................................................... 34 

2.10.1 Bayesian Information Criterion (BIC) ........................................................... 34 

2. 10.2 Akaike Information Criterion (AIC) .............................................................. 34 

2. 10.3 Residual plots .................................................................................................. 35 

CHAPTER 3 ................................................................................................................ 36 

RESEARCH DESIGN AND METHODOLOGY ....................................................... 36 

3.1 Study design ............................................................................................................ 36 

3.2 Study setting ........................................................................................................... 36 

3.3 Study population .................................................................................................... 36 

3.4 Data collection ........................................................................................................ 36 

3.5 Variables description ............................................................................................. 37 

3.5.1 Dependent variable ......................................................................................... 37 

3.5.2 Independent variables ..................................................................................... 37 

3.6 Statistical analyses ................................................................................................. 37 

3.6.1 Kaplan-Meier method ..................................................................................... 38 

3.6.2 Logrank method .............................................................................................. 38 

3.6.3 Modelling strategies ........................................................................................ 38 

3.7 Model comparison .................................................................................................. 41 

3.7.1 Akaike Information Criterion (AIC) .............................................................. 41 

CHAPTER 4 ................................................................................................................ 42 

RESULTS AND DISCUSSION .................................................................................. 42 



ix 
 

4.1 Exploratory Analysis ............................................................................................. 42 

4.2 Log rank tests for categorical variables ............................................................... 44 

4.3 Kaplan Meier survival curves for categorical variables ..................................... 44 

4.4 Cox proportional hazard model assumption tests .............................................. 45 

4.4.1 Proportional hazard test by scaled Schoenfeld residuals .............................. 45 

4.4.2 Cox Model bivariate and multivariate analysis .............................................. 45 

4.4.3 The goodness of fit for the Cox model ............................................................ 48 

4.5 Parametric models fitting ...................................................................................... 48 

4.6 Comparison of Cox and parametric survival models ......................................... 55 

4.6.1 Akaike Information Criterion (AIC) .............................................................. 55 

4.2 Discussion ............................................................................................................... 56 

CHAPTER 5 ................................................................................................................ 60 

CONCLUSION AND RECOMMENDATIONS ........................................................ 60 

5.1 Conclusion .............................................................................................................. 60 

5.2 Recommendations .................................................................................................. 60 

REFERENCE ............................................................................................................... 62 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 

LIST OF TABLES 

Table 1: Descriptive summary of variables ................................................................. 43 

Table 2: Cox proportional hazards model: risk factors of under-five mortality .......... 46 

Table 3: Bivariate Parametric regression models with hazard ratio estimates ............ 49 

Table 4: Multivariable Parametric regression models with hazard ratio ..................... 51 

Table 5: Parametric model coefficient estimates ......................................................... 53 

Table 6: Coefficient estimates for parametric model parameters ................................ 54 

Table 7: AIC values for parametric and Cox models .................................................. 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

 

LIST OF FIGURES 

Figure 1: Kaplan Meier survival curves for mothers’ occupation ............................... 44 

Figure 2: Graph of Scaled Schoenfeld residuals for Mothers’ Education levels ......... 45 

Figure 3: The goodness of model fit for Cox model .................................................... 48 

Figure 4: Gompertz survival rate graph for under-five children.................................. 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

 

APPENDICES 

APPENDIX 1: Commands for data analysis ............................................................... 70 

APPENDIX 2: ART patient card, front ....................................................................... 78 

APPENDIX 3: ART patient card, back ....................................................................... 79 

APPENDIX 4: Support letter from Chancellor College .............................................. 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

 

LIST OF ABBREVIATIONS AND ACRONYMS 

AHR  Adjusted Hazard Ratio 

AIC  Akaike Information Criterion 

AIDS  Acquired Immuno-Deficiency Syndrome 

ART  Antiretroviral Therapy 

ARV  Antiretroviral 

BIC  Bayesian Information Criterion  

CD4  Cluster of Differentiation 4 

CDF  Cumulative Distribution Function 

CI  Confidence Interval 

DIC  Deviance Information Criteria 

EGPAF Elizabeth Glaser Pediatric AIDS Foundation 

HAART Highly Active Antiretroviral Therapy 

HIV  Human Immuno-Deficiency Virus 

HR  Hazard Ratio 

LMICs  Low and Middle Income Countries  

LTFU  Lost to Follow Up 

ICU  Intensive Care Unit 

MDGs  Millennium Development Goals 

MDHS  Malawi Demographic and Health Survey 

MLE  Maximum Likelihood Estimation 

MoH  Ministry of Health 

MPHIA Malawi Population based HIV Impact Assessment 

MTCT  Mother to Child Transmission 



xiv 
 

NAC  National AIDS Commission 

NSO  National Statistics Office 

NVP  Nevirapine 

PLWHA People Living With HIV and AIDS 

PMTCT Prevention of mother to child transmission 

PrEP  Pre-Exposure Prophylaxis  

P-Value Probability Value 

SDGs  Sustainable Development Goals 

SSA  Sub-Saharan African  

TB  Tuberculosis 

UN  United Nations 

UNAIDS United Nations Programme on HIV and AIDS 

UNC  University of North Carolina 

UNICEF United Nations Children Education Fund 

UNIGME United Nations Inter-Agency Group for Child Mortality Estimation 

USAID United States Agency for International Development 

VMMC Voluntary Medical Male Circumcision 

WHO  World Health Organization 

 

 

 

 

 

 



1 
 

 

 

CHAPTER 1  

INTRODUCTION 

1.1 Background and history 

As of 2018, of the estimated nearly 38 million people worldwide living with HIV, 

approximately 1.7 million were children under 15 years of age. Since 2010, new HIV 

infections among children have declined by 41%, but only half (54%) of all children 

living with HIV are getting treatment and 100,000 children died of AIDS-related 

illnesses in 2018 (UNAIDS, 2019).  

 

Globally, it was estimated that about 5.4 million children aged under-five die each year, 

with huge variations and trends across regions and nations (UNICEF, 2017). A 2017 

UNICEF report on child mortality states that most of these children deaths happened in 

two particular regions: sub-Saharan Africa (SSA) (38%) and South Asia (39%). Over 

half of these deaths occurred in just five nations: the Democratic Republic of the Congo, 

India, Ethiopia, Nigeria and Pakistan. All things considered, 1 out of every 13 children 

born in sub-Saharan Africa dies before their fifth birthday as against 1 out of every 185 

in high-income countries- meaning that the highest proportions of under-five mortality 

are concentrated in sub-Saharan Africa and South Asia (UNICEF, 2017). 

 

The burden of mortality in children has remained a key area of concern for nations and 

organizations in the world. The year 2018 recorded approximately 5.3 million children 

and infant deaths worldwide. The risk of under-five mortality in the WHO Africa region 
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was 76 deaths per 1000 live births, which was eight-times higher than the WHO 

European region (WHO, 2018). This is far from ideal and is a worrying situation. 

 

The Malawi Population Based HIV Impact Assessment (MPHIA) is the first survey in 

Malawi to measure National HIV incidence, pediatric HIV prevalence and viral load 

suppression. Malawi has an overall adult HIV prevalence of 10.6% in the general 

population and of the estimated one million people living with HIV, 10% are children 

with pediatric HIV prevalence of 1.6% (MPHIA, 2016). Globally, under-five mortality 

rate declined by 61 per cent, from 93 deaths per 1,000 live births in 1990 to 37 in 2020 

(UNIGME, 2021; UNICEF, 2021). This is equivalent to 1 in 11 children dying before 

reaching age 5 in 1990, compared to 1 in 27 in 2020. With the end of the Millennium 

Development Goals (MDGs) era, the international community agreed on a new 

framework – the Sustainable Development Goals (SDGs) where the target is to end 

preventable deaths of new-borns and children under 5 years of age. The goal is for all 

countries to reduce under-five mortality to at least as low as 25 per 1000 live births. In 

2019, child mortality rate for Malawi was 41.6 deaths per 1,000 live births. Child 

mortality rate of Malawi fell gradually from 341.3 deaths per 1,000 live births in 1970 

to 41.6 deaths per 1,000 live births in 2019 (Malawi Child Mortality rate, 1960-2019, 

knoema.com). 

 Credible estimates of what this burden entails are essential for the establishment of 

informed health policies in order to implement effective health interventions. Although 

data exist on the rate of mortality and morbidity of children under the age of five years 

exposed to HIV in Africa, there is still little information regarding the area-specific 

infectious disease morbidity and mortality rates.  
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In 2011, Malawi started implementing Prevention of Mother to Child Transmission 

(PMTCT) Option B+ policy, making life-long ART available for all HIV infected 

pregnant and breastfeeding women, regardless of clinical stage or cluster of 

differentiation 4 (CD4) count.  This has resulted in a 66% reduction of vertical 

transmission within 3 years. This Malawi-pioneered strategy has since been included 

in global guidance by World Health organisation (WHO). As of February 2014, 12 

other African countries were implementing Option B+ (WHO, 2018). 

 

1.2 HIV prevalence in Chiradzulu 

Chiradzulu district is located in the southern region of Malawi. The district has an 

estimated population of 356,875 (NSO Malawi, 2018). Chiradzulu district hospital 

started providing free antiretroviral (ARV) drugs in 2001. According to the 2015/2016 

Malawi Demographic and Health Survey (MDHS), Chiradzulu District has an HIV 

prevalence of 9.2%, which is higher than the national average of 8.8% (MDHS, 2016), 

with a total number of 49,348 sexually active populations who have ever been tested 

for HIV and received results. 

Supported by Médecins Sans Frontières, decentralization of ART provision and 

treatment to other 11 health facilities was completed in 2003. Task shifting allowing 

nurses to initiate ART started in 2006. Other HIV programs such as HIV counselling 

and testing (HTC) and prevention to mother transmission (PMTCT) were also scaled 

up and decentralised. The Elizabeth Glaser Paediatric AIDS Foundation (EGPAF) also 

provides paediatric HIV prevention, care and treatment services. 

 

In addition to what the non-governmental organizations are doing, the hospital has also 

resources which are being used to address the HIV prevalence like drugs for the 
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prevention of mother to child transmission of HIV. It does also provide information 

about HIV and AIDS, civic education and communications through posters among 

others. Despite these efforts, lack of some drugs like flaconazole, vincristine as well as 

cotrimoxazole preventive therapy for treating opportunistic infections continue to be a 

major factor contributing to the mortality of people living with HIV and AIDS and this 

poses challenge for the district hospital (Chiradzulu District Council, 2017). 

 

1.3  Problem statement 

Pediatric HIV significantly contributes to overall child mortality and morbidity 

especially in high-burden countries. Malawi government has put in place strategies to 

meet the target of reducing by two thirds the mortality of under-five children. The 

Malawi Growth Development Strategy (MGDS III), Key Priority Area 5 (Health and 

Population), that is linked to Sustainable Development Goal (SDG) number 3, “Ensure 

healthy lives and promote well-being for all at all ages”, targets reduction of under-

five mortality at least as low as 25 per 1000 live births. Currently, under-five mortality 

rate for Chiradzulu district is at 65 deaths per 1000 live births (Chiradzulu District 

Council, 2017). 

Since the initiation of ART and Pre ART follow up program in 2001 at Chiradzulu 

District hospital, there has been no formal analysis to report on the survival patterns of 

under-five children living with HIV who are enrolled on HIV care. A study of children 

initiating ART younger than 5 years of age in rural Zambia between 2008 and 2015 

responded well to treatment (Jessica et al., 2021). Hence this study aimed at reporting 

on survival of under-five children living with HIV and determinants for survival by 

comparing Cox and parametric models in Malawi, Chiradzulu. 



5 
 

There are two major regression models used for right censored data: proportional 

hazards model (Cox) as a semi parametric method (Cox, 1972) and parametric model. 

Many of the standard parametric models such as Weibull, Exponential, Loglogistics, 

Gompertz and Lognormal are accelerated failure time models. However, Cox 

regression is the most widely employed model in survival analysis while parametric 

models lead to some benefits (Lawless, 2011). Researchers in medical sciences often 

tend to prefer semi parametric instead of parametric because of its less assumptions but 

some comments recommended that under certain circumstances, parametric models 

estimate the parameter more efficient than Cox (Oakes, 1977).  

 

Ata and Sozer (2007) argued that Cox regression model relies on the hazards being 

proportional, i.e. on a given covariate, its coefficient not changing over time. If this 

assumption is violated, the general Cox regression model is not suitable, and more 

appropriate analyses such as the stratified Cox regression model or the extended Cox 

regression model, including parametric duration models can be applied. 

 

1.4 Study objectives 

 

General objective 

The main aim of the study was to model and determine survival patterns of under-five 

children living with HIV enrolled on antiretroviral therapy. 

 

Specific objectives 

The study aimed at addressing the following specific objectives: 
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i) To develop the best statistical model for the survival of under-five children 

living with HIV in Chiradzulu; 

ii) To compare statistically between Cox proportional hazard and parametric 

hazard models for analyzing data of under-five children living with HIV on 

antiretroviral therapy in Chiradzulu; 

iii) To determine factors affecting the survival of under-five children living with 

HIV on antiretroviral therapy in Chiradzulu. 

 

1.5 Significance of the study 

Apprehension of the survival patterns of under-five children living with HIV on ART 

and determinants for their survival rate is important to the development and 

implementation of HIV programme for under five Children. The absence of adequate 

progress in reducing the rates of under-five mortality by many of the developing 

countries has resulted in the newly adopted Sustainable Development Goals (SDGs), 

with the target of reducing under-five  mortality to 25 per 1,000 or less by 2030 (United 

Nations, 2015). 

The Malawi Growth and Development Strategy (MGDS) III emphasises on improved 

quality of health services, patient safety and people centered services in order to reduce 

incidence and prevalence of diseases. Its strategy is to strengthen prevention and 

management of infectious diseases such as HIV/AIDS and sexually transmitted 

diseases. In Malawi, the following HIV prevention programmes are implemented: 

condom availability and use, HIV education and approach to sex education, prevention 

from mother to child transmission, voluntary medical male circumcision (VMMC) and 

Pre-exposure prophylaxis (PrEP). Therefore, it is expected that the results from this 

study will assist in improving HIV and AIDS programme for under five children. 
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Furthermore, the results of this study could lead to improvement of district social 

economic profile in addressing the issue of infant mortality. 

 

1.6 Definition of terms 

1) Hazard Ratio (HR): is a measure of the relative survival experience of two 

groups.  

2) Confidence Interval (CI): is a range of values around an estimate. 

3) P-value: is the probability of obtaining results at least as extreme as the 

observed results of statistical hypothesis test, assuming that null hypothesis 

is correct. 

4) The 90-90-90 targets: refer to the pathway by which a person is tested, linked 

and retained in HIV care, and initiates and adheres to antiretroviral drugs.  

 

1.7 Structure of this thesis 

The remainder of this thesis has been organized as follows: Chapter two discusses the 

literature review with combined statistical theory for AIDS and survival models. 

Chapter three discusses the methods employed in analysing the data for this study. 

Chapter four presents the results and discussion. Finally, chapter five presents the 

conclusion and recommendations for this study. 
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CHAPTER 2   

LITERATURE REVIEW 

2.1 Introduction 

This chapter discusses the relevant literature for the theory of analysis of time to event 

data. The first part of the chapter briefly discusses the HIV and AIDS studies in children 

conducted in other countries plus ART provision in Malawi.  

There are several models which researchers fit when dealing with survival data. The 

most used model is the Cox model. This is usually used because, it does not require any 

distribution to represent the survival time, and it is used to study the relationship 

between survival rate and covariates in the model. 

2.2 HIV and AIDS in East and Southern Africa 

Eastern and Southern Africa is the region hardest hit by HIV. It is home to more than 

60 percent of children and adolescents worldwide living with HIV. In 2018, an 

estimated 1.8 million children and adolescents aged 0-19 years in Eastern and Southern 

Africa were living with HIV (UNICEF, 2019). 

 

South Africa accounted for more than a quarter (240,000) of the region’s new infections 

in 2018. Seven other countries accounted for more than 50% of new infections: 

Mozambique (150,000), Tanzania (72,000), Uganda (53,000), Zambia (48,000), Kenya 

(46,000), Malawi (38,000) and Zimbabwe (38,000) (UNAIDS, 2019). Overall, new 

infections in the region have declined by 28% since 2010 (UNAIDS, 2019). Around 

310,000 people died of AIDS-related illnesses in the region in 2018, although the 



9 
 

number of deaths has fallen by 44% since 2010 (UNAIDS, 2019). Despite the 

continuing severity of the epidemic, huge strides have been made towards meeting the 

UNAIDS 90-90-90 targets.  The 90-90-90 targets refer to the pathway by which a 

person is tested, linked and retained in HIV care, and initiates and adheres to 

antiretroviral drugs (ARVs).  

 

Despite substantial improvements in accessibility of ART and improved program 

implementation, death and loss to follow-up (LTFU) have been a prevailing challenge 

among people living with HIV and AIDS (PLWHA) of all ages. However, attrition is 

much more pronounced in pediatric cases. There have been various studies conducted 

in Sub-Saharan African (SSA) countries to determine the rate of mortality among 

pediatric ART patients. A systematic review conducted by Fox et al. (2015), estimated 

attrition (death and LTFU) of pediatric ART patients in low and middle-income 

countries (LMICs) based on studies from 2008 to 2013. However, the pooled magnitude 

of mortality at different ART follow-up periods have not been separately analysed and 

reported. The aim of this review was to determine the pooled magnitude of mortality at 

different follow-up period among pediatric patients who were on first-line ART in SSA 

countries based on studies published since 2014. This timeframe was selected to include 

new studies that were not covered in the systematic review conducted in LMICs (Fox 

et al., 2015). The lessons from such studies can guide pediatric HIV program 

implementation in SSA and help policy makers and program managers to make 

informed decisions to prevent deaths among pediatric ART patients. 
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2.3 HIV and ART provision in Malawi 

Malawi’s HIV prevalence is one of the highest in the world, with 9.2% of the adult 

population (aged 15-49) living with HIV (UNAIDS, 2019). In 2018, an estimated one 

million Malawians were living with HIV and 13,000 Malawians died from AIDS-

related illnesses (UNAIDS, 2019). The Malawian HIV epidemic plays a critical role in 

the country’s life expectancy of 61 years for men and 67 years for women (WHO, 

2021).  

 

Over the last decade, impressive efforts to reduce the HIV epidemic have been made at 

both national and local levels. In 2018, 90% of people living with HIV in Malawi were 

aware of their status, of whom 87% were on treatment. Of these people, 89% were 

virally suppressed, meaning the country was very close to reach the UNAIDS 90-90-

90 targets. This equates to 78% of all people living with HIV in Malawi on antiretroviral 

treatment (ART) and 69% of all people living with HIV virally suppressed (UNAIDS, 

2019). Among children (0-14 years) treatment coverage is lower at only 61% of HIV-

positive children accessing ART (UNAIDS, 2019).  

 

New infections have dramatically declined from 66,000 new infections in 2005 to 

38,000 in 2018 (UNAIDS, 2019). An impressive prevention of mother-to-child 

transmission (PMTCT) programme in Malawi has also driven down new HIV 

infections among children (ages 0-14). In 2018 there were 3,500 new pediatric 

infections, compared with 15,000 in 2010 (UNAIDS, 2019).  

 

In 2015, the World Health Organization (WHO) announced new universal treatment 

guidelines for antiretroviral treatment (ART), which supports initiation of ART for all 
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individuals living with HIV, independent of their immunologic or clinical status (WHO, 

2018). Since then, countries throughout sub-Saharan Africa have adopted the 

“Universal Test-and-Treat” (Test and Treat) strategy. The strategy is expected to 

contribute to improved client outcomes and attaining UNAIDS 90-90-90 treatment 

targets, specifically the ART coverage target (UNAIDS, 2014). 

 

2.4 Scaling-up antiretroviral therapy in Malawi 

Before the scale-up, an estimated 930 000 people in Malawi were HIV-infected, with 

170,000 in immediate need of ART. About 3000 patients were on ART in nine clinics 

(Andreas et al., 2016). Relevant changes by December 2015, cumulatively 872,567 

patients had been started on ART from 716 clinics, following national treatment 

protocols and using the standard monitoring system (Andreas et al., 2016). 

 

2.5 Theory of analysis for survival data 

The survival patterns following HIV infections in African population in the era before 

antiretroviral therapy form an important baseline for measuring future success of 

treatment programmes. The knowledge of the survival times of patients with HIV and 

variables that influence survival is important for increasing understanding of the patho-

physiology of the disease, clinical decision making and planning health services 

interventions (Isingo et al., 2007). The survival of patients with AIDS may depend on 

a variety of factors including hosts, the patterns of diseases present, access to health 

care, diagnostic routines and therapeutic interventions (Robert et al., 1995). 

 

The assumption of Cox models is that child survival is dependent on a baseline survival 

and certain risk factors, however, this is not often true in reality as survival data are 
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dependent when clusters or locations are considered. This dependency introduces 

unobserved random effects (frailties) present at various levels, and suggests the 

presence of community level characteristics that influence health outcomes 

(Cambridge, 2015). The existence of these effects caused either by a location, or a 

presence in certain population clusters leads to the use of spatial survival models to 

capture these unobserved effects, especially if they are geographical. 

The Ethiopian Demographic and Health Survey data was used for the study of survival 

analysis of under-five children and its associated risk factors in Ethiopia. In this study, 

it was attempted to find out the impact of socioeconomic, demographic, environmental, 

health related and nutritional factors in under- five mortality of child. Firstly, data was 

analysed using Kaplan-Meier, non-parametric method of estimation of survival 

function and compared the survival time of different categories of region and other 

covariates that influence the child survival. Cox proportional hazard model and 

stratified Cox proportional model were also used to compare the hazard of under-five 

mortality of child for different covariates comparison to the reference categories. The 

potential covariates which influence under five mortality were region, mothers’ 

education level, sex, mothers’ age at first birth, preceding birth interval, contraceptive 

use, breast feeding, place of delivery, number of antenatal visits during pregnancy and 

father occupation. The study recommends that under-five mortality of child among 

regions is significant. This is an indication that the risk of under-five mortality of child 

varies from one region to another. Thus, in order to have a bearing on policy 

recommendations, future studies should focus on identifying risk factors of under-five 

mortality of child for each region of Ethiopia separately in high mortality area 

(Getachew, 2016). 
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A retrospective cohort study was conducted to determine the main factors that affect 

under-five mortality in West Sulawesi using Intercensal Population Survey 2015. There 

were 2549 cases in West Sulawesi. In this study, the impact of mother’s education, age 

of first delivery, previous birth interval, birth type, the gender of the under-five child, 

and paramedics help during labour were investigated using the Cox proportional hazard 

regression. All variables impacted mostly to the survival rate of under-five children. 

Female under-five children had a lower hazard (risk) of death compared to the males. 

Twins had a 3 times higher hazard of death as compared to single born children. In 

addition, higher mother’s education tends to have a lower hazard than those with lower 

education (Nurmalasari et al., 2019). 

 

The effect of antiretroviral therapy on survival of HIV and Tuberculosis (TB) infected 

patients in Ukraine was assessed in prospective cohort study. The Kaplan-Meier 

method was used to determine the survival of 80 patients and the effect of Highly Active 

Antiretroviral Therapy (HAART) and survival was evaluated using Cox proportional 

hazard models. From the results of the analysis, it was found that patients with CD4 

cell count<100μl had 5-fold higher risk of mortality and those with pulmonary 

tuberculosis with a 2-fold increased risk. Another assessment as to whether highly 

active ART was associated with improved survival in critically ill HIV-infected patients 

was conducted at the Saint–Louis teaching hospital in Paris, France. In this study, 

multivariable logistic regression was used to identify risk factors for death. It was found 

that five factors were independently associated with increased intensive care unit 

mortality: delayed intensive care unit (ICU) admission, acute renal failure, hepatic 

cirrhosis, admission for coma and severe sepsis (Mykhailo & Dmytro, 2013). 
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The adherence to ART in Benin city and identification of the contributing factors in a 

prospective study conducted on 125 out patients were assessed at the University of 

Benin teaching hospital. The authors used logistic regression models to determine the 

predictors of ART adherence relative to socio-demographic and clinical treatment 

variables. The proportional data were compared using Chi-square test or fischer exact 

at statistical significance of 95% confidence interval. The results from the findings 

showed that poor financial status, medication adverse effects, lack of confidentiality, 

occupational factors and stigmatisation were the major reasons given for ART non-

adherence (Ayalu et al., 2012). 

 

The investigation on the relationship between tuberculosis infection and death in people 

living with HIV and AIDS was conducted on 1575 subjects residing in both rural and 

urban areas of Yala province in Thailand and were followed between January 1992 and 

April 2010. Cox proportional hazard model was used to analyse the relationship and 

the model reported statistically significant relationship in people living with HIV and 

AIDS with tuberculosis and patients without tuberculosis. The people living with HIV 

and AIDS with tuberculosis were more likely to live shorter compared to those patients 

without tuberculosis after accounting for demographic factors.  

 

The prospective study aimed at estimating the short-term disease progression among 

people living with HIV was conducted in Asia and Pacific region. In this study, the 

authors used Cox proportional hazard model to assess the predictors of disease 

progression and prognostic models were developed using Weibull models. It was found 

out in the analysis that the patients’ not on treatment had higher rate of disease 

progression with 17.6 per 100   person-years against 8.1 per 100 person-years in the 
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patients receiving antiretroviral treatment. The results showed that the baseline CD4 

count was the strongest predictor of disease progression. The authors reported that 

prognostic models were successful at identifying patients at high risk of short-term 

disease progression. The study was conducted on the outcome of antiretroviral 

treatment in rural public hospital in South nations, nationalities and people region in 

Ethiopia. The study used historical retrospective cohort study for patients visiting from 

January 1, 2005 to January 31, 2009. In the study, the authors used Kaplan-Meier 

models to estimate mortality and Cox proportion hazard models to identify predictors 

of mortality. It was found that the hazard of death was higher in males patients with 

WHO stage IV at baseline compared to WHO stage I (Zhou & Kumarasamy, 2005). 

 

The survival rate of people living with HIV and AIDS after receiving free antiretroviral 

treatment was determined in Dehong Prefecture, Yunnan Province, China. A 

retrospective cohort analysis was conducted on all the people living with HIV and AIDS 

aged over 16 years who had started ART during January 2007 throughout December 

2009 in Dehong Prefecture. 

 

Assessing survival is not always an easy task. The choice of method is guided by the 

type of survival data (e.g. collecting age at death or monitoring live individuals with 

perfect or imperfect detection), the species life-history (e.g. single or numerous stages 

or ages) and the environment it experiences (e.g. controlled conditions versus variable 

environments). While it is relatively straightforward to gather survival data and assess 

survival using simple models under controlled lab conditions (Klein, 2016), monitoring 

survival in free-ranging populations often require more sophisticated capture-mark-

recapture (CMR) techniques to deal with imperfect detection of individuals (Williams 
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et al., 2002). Indeed, survival data are often ‘incomplete’ in free-ranging populations, 

timing and cause of death can be hard to assess and multiple environmental factors are 

at play in influencing survival. Humans are an exception, with the existence of several 

consequent databases with perfect knowledge of age and cause of death for several 

human populations.  

 

Survival analysis estimates and interprets survival functions as well as hazard functions 

from time to event data. In addition, survival analysis can be used to compare survival 

and hazard functions. It also helps to identify and asses the relationship of explanatory 

variables to survival time. This helps practitioners to concentrate on areas that can help 

improve people’s welfare thereby, improving their survival times. 

 

2.5.1 Survival terminology 

By definition, survival analysis involves the application of statistical procedures for 

analysing data for which the outcome variable of interest is time until a study unit 

experiences an event (Kleinbaum & Klein, 2010).  

The survival function is the probability that the survival time is greater than t 

(Kalbfleisch and Prentice, 2011).  

Let T denote a random variable that describes survival time from ART initiation into 

the study to death. 

That is, 

S(t) = P(T > t),        (1) 

S(t) = 1- F(t), 

where F(t) is the cumulative density function of the random variable T.  

F(t) = P(T  t).       (2) 
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where F(t) = P(T ≤ t) denotes the Cumulative Distribution Function (cdf) denoted as 

F(t) informs the probability that length of time T is less than or equal to any given value 

of t. 

 

The probability density function is the slope of the cdf (failure function), 

𝑓(𝑡) = lim
∆𝑡→0

(
𝑝(𝑡≤𝑇≤𝑡+∆𝑡)

∆𝑡
)  =  

𝜕𝐹(𝑡)

𝜕𝑡
 .     (3) 

 

Hence 
𝜕𝑆(𝑡)

𝜕𝑡
 is the probability of an individual dying in the interval (t, t+∆t). The survival 

function S(t) and the failure function F(t) are and hence have the properties of 

probabilities. It can be observed that, in particular, the survivor function lies between 

zero and one and strictly decreasing function of t.  

The survivor function is equal to one at the start of the follow up (t=0) and zero at 

infinity. This implies that 

0 S (t) 1,          (4) 

S (0) 1, 

and that, 

lim
𝑡→0

𝑆(𝑡) = 0.          (5) 

Further , 
𝜕𝑆

𝜕𝑡
< 0, and the density function is non-negative 

f (t) ≥0.          (6) 

 

2.5.2 The hazard rate 

The hazard rate gives the instantaneous failure rate at time given that an individual has 

survived up to time t (Kalbfleisch & Prentice, 2011). The continuous time, hazard rate 

is defined as, 
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𝜃(𝑡) =
𝑓(𝑡)

1−𝐹(𝑡)
=

𝑓(𝑡)

𝑆(𝑡)
.         (7)  

It can also be demonstrated that there is a clear relationship between hazard and 

survival functions given as follows: 

𝜃(𝑡)     =
𝑓(𝑡)

1−𝐹(𝑡)
,          (8)  

=
−𝜕[1−𝐹(𝑡)]

𝜕(𝑡)
/1 −  𝐹(𝑡),       (9)  

=
−𝜕{−𝑙𝑛[𝑆(𝑡)]}

𝜕(𝑡)
.       (10) 

Integrating both sides gives the following: 

∫ 𝜃(𝑢)𝑑𝑢 = 𝑙𝑛[1 − 𝐹(𝑡)]
𝒕

𝟎
⃒ 𝒕

𝟎
.        (11) 

since F (0) =0 and ln(1) = 0 then, 

𝑙𝑛[1 − 𝐹(𝑡)] = 𝑙𝑛[𝑆(𝑡)] = − ∫ 𝜃(𝑢)𝑑𝑢
𝒕

𝟎
, 

so that,  

𝑆(𝑡) = exp (− ∫ 𝜃(𝑢)𝑑𝑢
𝒕

𝟎
), 

which becomes  

S(t) exp[H(t)].        (12) 

Then it follows that: 

𝐻(𝑡) = ∫ 𝜃(𝑢)𝑑𝑢
𝒕

𝟎
,  

which is cumulative hazard function, 

𝐻(𝑡) = −ln [𝑆(𝑡)].       (13) 

From this it can be observed that, 

𝐻(𝑡) ≥ 0,  

and 
𝜕𝐻(𝑡)

𝜕𝑡
=  𝜃(𝑡).         (14) 
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2.5.3 The probability density function of survival time 

The probability density function can be written as follows: 

𝑓(𝑡) = 𝜃(𝑡) 𝑒𝑥𝑝 (− ∫ 𝜃(𝑢)𝑑𝑢
𝒕

𝟎
) , 𝑡 ≥ 0.     (15) 

The three functions outlined above are equivalent specifications of the distributions of 

the survival time. The survival function is useful for comparing survival progress of 

two or more groups. Among the functions of the survival analysis, the hazard function 

provides useful description of the risk of failure at any time point. 

 

2.5.4.  Censoring 

It is difficult to ascertain exact survival times for study participants that did not 

experience an event of interest. Exact survival times can only be calculated for patients 

with outcomes during or by the end of the study. In this case, patients without an 

outcome are censored. Events can be left censored or right censored. In practice, most 

survival data are right censored (Kleinbum & Klein, 2010). Therefore, analysis of such 

data requires statistical methods that must consider a key analytical problem of 

censoring, if survival functions of individuals are to be meaningful. 

Where there is no censoring, the survival function can be estimated as 

𝑆̂(𝑡) =
𝑁∗

𝑁
,  

where N* denotes the number of individuals with survival times > t and  

N denotes the number of individuals in the data set. 

 

2.5.5 Cox regression model 

Cox regression model is a semi parametric model which is popular in survival data 

proposed by Cox (1972). The Cox model is defined as 

h(t|x) = ℎ0(𝑡)exp(𝛽1𝑥1 + ⋯ 𝛽𝑝𝑥𝑝),     (16) 
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where h(t|x) is the hazard function at time t for a subject with explanatory variables X= 

(x1, x2…xk), h0(t) is the baseline hazard function, that is the hazard function when all 

covariates equal to zero and 𝛽𝑖  is the regression coefficient for the ith covariate. The 

baseline can take any form (unspecified) but not negative. The Cox model assumes that 

the hazard functions for the two different levels of a covariate are proportional for all 

values of it and is given by: 

ℎ(𝑡𝑘|𝑋𝑘)

ℎ(𝑡𝑗|𝑋𝑗)
=

ℎ0(𝑡)exp {𝛽1𝑋𝑘1+⋯𝛽𝑝𝑋𝑘𝑝}

ℎ0(𝑡)exp {𝛽1𝑋𝑗+⋯𝛽𝑝𝑋𝑗𝑝}
, 

= exp{𝛽1(𝑋𝑘1 − 𝑋𝑗1) + 𝛽𝑝(𝑋𝑘𝑝 − 𝑋𝑗𝑝)}.   (17) 

Hence h0(t) cancels out and this means that the ratio is the same at all-time points. 

 

2.5.5.1 Assumption of the Cox model 

The Cox model makes the following assumptions: 

a) The structure of the model is assumed correct. That is for example, model is 

multiplicative and all relevant covariates have been met. 

b) The continuous covariates have a linear form. 

c) The proportional hazards assumptions are satisfied. 

 

2.5.5.2 Cox model popularity 

The Cox model has the following key properties: 

a) It is robust hence a safe choice of model in many situations. 

b) Estimated hazard are always non-negative. 

c) Even though h0 (t) is unspecified,  𝛽𝑖s can be estimated and thus compute 

the hazard ratio. 

d) The h0(t|x) and S(t|x) can be estimated for a Cox model using a minimum of 

assumption. 
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The Cox proportional hazard model can fit by maximizing the likelihood function and 

this procedure estimates the h0(t) and β. The popular approach is proposed by Cox 

(1975) in which a partial likelihood also called Cox likelihood function that does not 

rely on h0(t) is realized for β. The partial likelihood is a technique developed to make 

inference about the regression parameters in the presence of nuisance parameter h0(t) 

in the Cox PH model. Assume K different failure times t(1), t(2)...t(k) such that there is 

exactly one failure at each 𝑡(𝑖), i=1,...,k . Let [i] denote the subject with an event time 

𝑡(𝑖) and R(t) the risk set at time t, then the partial likelihood is given as: 

L(𝛽) =
∏ 𝑒𝑥𝑝𝑘

𝑗=1 (∑ 𝛽𝑖𝑋𝑗𝑖
𝑝
𝑖=1 )

∑ exp (∑ 𝛽𝑖𝑋𝑗𝑖
𝑝
𝑖=1

)𝑖𝜖𝑅(𝑡|𝑗)
.      (18) 

The likelihood considers probabilities for subjects who fail and does not consider 

probabilities for censored subject explicitly. The censored subjects are taken into 

account in the risk set. The estimates of ’s is denoted by 𝛽̂i ‘s. The 𝛽̂i ‘s solves: 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽𝑖
= 0, 𝑖 = 1, … 𝑝.          (19) 

 Therefore, 𝛽̂i ‘s maximise the Cox likelihood. 

 

2.6 Testing proportional hazard assumptions  

The proportional hazard is the core assumption of the Cox model. There are a number 

of procedures for ensuring that a model satisfies the assumption of proportionality 

before the model results can be safely applied. The proportional hazard means that the 

survival for two subjects have hazard functions that are proportional overtime (constant 

relative). The proportional hazards (PH) assumption tests can be checked using 

statistical tests and graphical diagnostics based on the scaled Schoenfeld residuals. 
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 If a variable violates PH assumption, Machin et al. (2006) recommends that a stratified 

Cox PH regression model be fitted. This is because stratification controls the effect of 

such a variable in a Cox model without making the PH assumption. 

 

2.6.1 Statistical tests 

2.6.1.1 Logrank method 

Logrank test is used to find out whether the true survival curves differ from group to 

group with hypothesis testing: 

H0: No differences between survival times curves 

H1: There is a difference between survival times 

It consists of observed versus expected events. For example, letting 𝑡(1)<…<𝑡𝑟 be r 

distinct deaths times for each group. At time (j), let d(1j) and d(2j) be the number of deaths 

in group I and II respectively, d(1j) and d(2j) be the number of persons at risk prior to the 

time t(j). Then the log rank test statistic is: 

𝜒2 =
(∑ 𝑑𝑖𝑗−𝐸𝑥𝑖𝑗))2𝑟

𝑗=1

𝑉𝑎𝑟
~𝜒2(1) ,     (20) 

where    𝐸𝑥𝑖𝑗 =
𝑛1𝑑𝑗

𝑛𝑗
.   

The mean of the hypergeometric random variable and the variance of d1j are given as, 

𝑉𝑎𝑟(𝑑𝑖𝑗) =
𝑛1𝑗𝑛2𝑗𝑑𝑗(𝑛1𝑗−𝑑𝑗)

𝑛2𝑗(𝑛𝑗−1)
,  

where  𝑉𝑎𝑟 = ∑ 𝑣𝑎𝑟(𝑑1𝑗)𝑟
𝑖=1 .    (Mantel, 1966) 

 

2.6.1.2 Global test for the stratified 

The global test for the stratified Cox model is an extension of the global test for the 

ordinary Cox model (Goeman et al., 2005). 
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Let us assume that n observations of q predictors are organized in a data matrix  

𝑋Є𝑅(𝑛∗𝑞)with elements 𝑋𝑖𝑗, further define 𝑅𝑥 = 𝑋X′. The stratified Cox model, the 

hazard function of individual i at time t is, 

ℎ𝑖(𝑡) = ℎ(𝑠𝑖)(𝑡)exp (𝑟𝑖), 

where ℎ(𝑖)(. ), … , ℎ(𝑚)(. ) are the unknown baseline hazards of strata 1, ..., m and 

r𝑖 = ∑ (𝛽𝑙)𝑥𝑖𝑙
𝑞
𝑙=1 ,      (21) 

is the linear effect of the predictors. 

Observing a sample of size n consisting of the predictor matrix X, follow-up times, 

𝑡 = (𝑡1, … , 𝑡𝑛), 

 and status indicators  

𝒅 = (𝑑1, … , 𝑑𝑛). 

We are interested in testing the null hypothesis that the predictors are not associated 

with survival, i.e. the hypothesis testing that: 

𝐻0: 𝛽1 = ⋯ = 𝛽𝑞 = 0. 

 

2.6.2 Graphical diagnostics 

The Cox PH survival function can be obtained by the relationship between hazard 

function and survival function, 

𝑆(𝑡|𝑋) = 𝑆0(𝑡) exp(∑ 𝛽1𝑋𝑘
𝑘
𝑖=1 ).     (22) 

where 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘) is the value of the vector of predictor variables for a 

particular individual. Taking the logarithm twice, we have 

ln[-ln S(t| X)]= ∑ 𝛽1𝑋𝑘 +𝑘
𝑖=1 ln[-lnS0(t)]. 

It can be noted that the difference in log-log curves corresponding to two different 

individuals with variables 𝑋1 = (𝑥11, 𝑥12  … 𝑥1𝑘) and 𝑋2  = (𝑥21, 𝑥22  … 𝑥2𝑘) is given 

by,  
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ln [-ln S (t| X1) - ln S (t| X2] = ∑ 𝛽𝑖(𝑋1𝑖 − 𝑋2𝑖
𝑘
𝑖=1 ),  (23)  

which does not rely on t. By plotting estimated log (-log (survival) versus survival time 

for the two groups, parallel curves would be realized if the hazards are proportional. 

However, this method does not work well for continuous predictors or categorical 

predictors that have many levels because the graph becomes “cluttered”. Moreover, the 

curves are sparse when there are few time points and it may be difficult to gauge how 

close to parallel is close enough. 

 

2.6.2.1 Kaplan-Meier method 

The Kaplan-Meier estimator, also known as the product limit, is an estimator for 

estimating the survival function from lifetime data. It measures the fraction of patients 

living for a certain amount of time after treatment (Kaplan & Meier, 2018). A plot of 

the Kaplan-Meier estimate of the survival function is a series of horizontal steps of 

declining magnitude which, when a large enough sample is taken, approaches the true 

survival function for that population. The value of the survival function between 

successive distinct sampled observations is assumed to be constant. The method is 

defined as: let 𝑋1, 𝑋2, … , 𝑋𝑛 be independently identically distributed survival times 

having distribution function F(x) and let G(c) be the distribution of independently 

identically distributed censoring times 𝐶1, 𝐶2, … , 𝐶𝑛. Let 𝑡𝑖 = 𝑚𝑖𝑛 {𝑋𝑖, 𝐶𝑖} is the 

observed survival time and δ𝑖 = 𝐼(𝑋𝑖 ≤ 𝐶𝑖) indicate whether the survival time is censored 

(0 = alive) or event (1 = dead). Let the number of individuals who are alive just before 

time 𝑡𝑖  including those who are about to die at this time, be 𝑛𝑖 and 𝑑𝑖  denote the number 

who die at this time. The Kaplan-Meier estimator is defined as: 

∏ ((𝒏𝒊
𝒏
𝒊=𝟏 −𝒅𝒊))𝜹𝒊

𝒏𝒊
.       (24) 
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The assumption of the Kaplan-Meier survival function is that the distribution of 

censoring times is independent of exact survival times. 

 

2.6.2.2 Deviance residuals 

The deviance residuals (Therneau, Grambsch and Fleming, 1990) is defined by 

r𝐷𝑖 = 𝑠𝑖𝑔𝑛(𝑟𝑥𝑖[−2{𝑟𝑥𝑖 + 𝛿𝑖 log(𝛿𝑖 − 𝑟𝑥𝑖}]
1
2,   (25) 

where the function sign (.) is the sign function which takes the values 1 if 𝑟𝑥𝑖 is 

positive and -1 if 𝑟𝑥𝑖 if negative. 

𝑟𝑥𝑖=𝛿𝑖 - 𝑟𝑐𝑖, 

is the martingale residuals for the 𝑖𝑡ℎ individual, 𝛿𝑖 = 1 for uncensored observation and 

𝛿𝑖 = 0  for censored observation. The deviance residuals are normalized transformation 

of the martingale residuals (Therneau et al., 1990). They have a mean zero but are 

approximately symmetrically distributed about zero when fitted model is appropriate. 

Very large or small value can indicate potential outliers. 

 

2.6.2.3 Schoenfeld residuals 

Schoenfeld residuals are computed with one per observation per covariate. It is only 

defined at observed event times for the  𝑖𝑡ℎ subject and  𝑘𝑡ℎ covariate. The estimated 

Schoenfeld residual 𝑟̂𝑖𝑘, (the covariate value for the individual that failed minus its 

expected value) is given by, 

𝑟̂𝑖𝑘 = 𝑋𝑖𝑘 −  X̂̅wik, 

where 𝑋𝑖𝑘 is the value of the 𝑘𝑡ℎ covariate for individual i and X̂̅wik is the weighted mean 

of covariate values for those in the risk set at the given event time. Positive value of 

risk shows X value that is higher than expected at that death time. The Schoenfeld 

residuals sum to zero. 



26 
 

2.7 Adding time-dependent covariates in the Cox model 

This is done by creating interactions of the predictors and a function of survival time. 

Let 𝑋𝑖 be the predictor of interest, and creating 𝑋𝑗(𝑡) as a time–dependent covariate, 

then 

𝑋𝑗=𝑋𝑖 ∗ 𝑔(𝑡), 

where g(t) is a function of time. The model assessing PH assumption for 𝑋𝑗 adjusted 

for other covariates is: 

ℎ(𝑡, (𝑡)) = ℎ0(t)exp[𝑏1𝑋1 + 𝑏2𝑋2 + . . . 𝛽𝑗𝑋𝑗 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝛿𝑋𝑗 ∗  g(t)], (26) 

where 𝑋(𝑡) = (𝑥1, 𝑥2, 𝑥𝑝, 𝑥𝑗(𝑡)) is the value of predictor variables for a particular 

individual. The null hypothesis to check proportionality is that, 𝛿 = 0 where 𝛿 is time 

varying coefficient for 𝑋𝑗 covariate. The test statistic can be done using either a Wald 

test or a likelihood ratio test. These statistics have chi-square distribution with one 

degree of freedom under the null hypothesis. If the time–dependent covariate is 

significant, then the predictor is not proportional. 

 

2.8 Parametric survival models 

Parametric survival models are regression models in which the distribution of the 

response is chosen to be consistent with what one would see if the response is time to- 

failure (Gutierrez, 2010). The parametric models are fitted to the survival data using 

maximum likelihood method, the procedure is described as follows: 

Suggesting that the survival times 𝑡1, 𝑡2 … 𝑡𝑛 are observed and q of the n individuals die 

at times t(1) <t(2)…<t(q) and that the survival times of the remaining n-q (q<n) individuals 

are censored. If f(t) denotes the probability density function of the survival time t and 

S(t) be the survival function then, the likelihood is given by, 

∏ {𝑓(𝑡𝑖)}𝑐𝑖{𝑆(𝑡𝑖)}1−𝑐𝑖𝑛
𝑖=1 ,     (27) 
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where, c is an indicator variable, taking value 0 when the survival time is censored and 

1 for the uncensored survival time.  

 

2.8.1 Weibull model 

The Weibull distribution is the generalized version of the exponential distribution. It is 

preferred for performing survival data analysis in industrial engineering (Rinne, 2020). 

However, when implementations in the discipline of medicines are examined, one may 

see that it is an important distribution model. It is a flexible distribution that allows 

monotonous increasing and decreasing of mortality ratio in patients’ groups. In a study 

carried by Viscomi et al. (2006), the distribution of the survival period of childhood 

leukemia patients was analyzed using the Weibull distribution. In a study conducted in 

Italy on the national wide estimations of the cancer patients, some estimations were 

made for defining the parameters of Weibull distribution. The Weibull distribution has 

the following functions: 

h(t |x) =𝜆,       (28) 

is the hazard rate, and the hazard function is given by, 

h(t) = 𝜆t, 𝜆> 0, t > 0.       (29) 

The survival function is defined as: 

S(t) = exp(-𝜆t).       (30) 

The probability density function for the exponential regression model is given by, 

f (t) = 𝜆exp(-𝜆t).       (31) 

The exponential model assumes that the baseline hazard is constant (Lawless, 2011). 

Therefore, the hazard is given by, 

h(t|𝑥𝑖)=exp(𝛽0+𝛽1𝑥𝑖) .     (32) 

The survival function is given by, 
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S(t|𝑥𝑖)=exp {-exp(𝛽0+𝛽𝑖𝑥𝑖)}.      (33) 

Then the hazard function for a particular person with the explanatory variables 

(𝑥1, 𝑥2…xp) is given by: 

ℎ(𝑡|𝑥) = 𝜆𝑝(𝑡)𝑝−1 exp(𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑝𝑥𝑝) = 𝜆𝑝(𝑡)𝑝−1exp (𝛽`𝑥). (34) 

 

2.8.2 Gompertz model 

Gompertz model is used frequently by medical researchers and biologists in modeling 

mortality ratio data (Wilson, 1994). The model was formulated by Gompertz. It has 

these functions: 

Hazard function: 

ℎ(𝑡) = 𝜆 exp(𝛾𝑡) ,     (35) 

for 0≥t<∞ where 𝜆 is positive value and  is the scale parameter and 𝛾 is the shape 

parameter. When g = 0 survival times have an exponential distribution, where γ>0 the 

hazard increases monotonically with time and when γ<0 the hazard decreases with time. 

 

ℎ0(𝑡) = 𝜆 exp(𝛾𝑡) exp(𝛽0) ,      (36) 

the model now becomes: 

h(t|𝑥𝑖)= ℎ0(𝑡)exp(𝑥𝑖𝛽x) t=exp(𝛾𝑡) 𝛽𝑥 .   (37) 

The survival function is given by: 

S(t)=exp (
𝜆

𝛾
)(1-exp (𝛾𝑡).      (38) 

The distribution is characterized by the fact that the log of hazard is linear in it. The 

hazard function for a particular person using the Gompertz distribution is given by: 

ℎ(𝑡|𝑥) = 𝜆 exp(𝛾𝑡) exp(𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑝𝑥𝑝) =

𝜆 exp(𝛽𝑇𝑥) exp(𝛾𝑡) .(39) 
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2.8.3 Log-logistic model 

The log logistic distribution is continuous for the random variable which is not negative 

in probability and statistics. The mortality ratio in a life analysis slowly decreases after 

it reaches to the maximum point over a finite period and it is suitable to use a non-

monotonic failure rate distribution model on the life and lost (Viscomi et al., 2006).  

Zhou et al. (2007) conducted study in which he emphasized that the maximum 

likelihood estimation was the most suitable method in estimating the parameters when 

performing analyses using log logistic distribution on grouped data such as half 

censored data. 

These are the distributions functions for the log logistic: 

ℎ(𝑡) =
𝜆𝑝𝑡𝑝−1𝑛𝑥

1+𝜆𝑡𝑝  ,      (40) 

is the hazard function, h(t) increases then decreases if p>1, monotonically decreases 

when p=1, λ gives information on the covariate, 

𝜆𝑖 = exp(𝑥𝑖𝛽) 

and the following function, 

ℎ(𝑡) =
𝜆𝑝𝑡𝑝

1+𝜆𝑝𝑡𝑝
  ,      (41) 

is the survival function.  

The Accelerated Failure time for the log logistic regression: 

𝜆𝑡𝑖= exp(-𝑥𝑖𝛽x)𝑡𝑖,       (42) 

with 𝑡𝑖 ∼ 𝐿𝑜𝑔𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝛽0, 𝛾) 

This has the cumulative distribution function, 

𝐹(𝑡) = 1 − [1 + {exp(−𝛽0) 𝑡}
1

𝛾]−1    (43) 

ln (𝑡𝑖)=𝑥𝑖𝛽𝑥 + ln (𝜏𝑖) = (𝛽0 + 𝑥𝑖𝛽𝑥 + 𝜇𝑖)     (44) 
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where 𝜇𝑖  follows a logistic distribution with mean 0 and the standard deviation,
𝜋𝛾

√3
. This 

follows: 

𝐸{ln(𝑡𝑖|𝑥𝑖)} = [𝛽0 + 𝑥𝑖𝛽𝑥].     (45) 

The base line survivor functions of 𝑡𝑖 is given by, 

𝑆0(𝑡) = 1 + [1 + {exp(−𝛽0) 𝑡𝑖}
1

𝛾]−1 .   (46) 

Hence the effect of the covariates is to accelerate time by the factor of 𝑒𝑥𝑝(−𝑥𝑖𝛽𝑥). 

Then the Accelerated Failure time model is given by, 

𝑆(𝑡𝑖|𝑥𝑖) = 𝑆0{exp(−𝑥𝑖𝛽𝑥) 𝑡𝑖} ,    (47) 

= [1 + {exp(−𝛽0) exp (−𝑥𝑖𝛽𝑥)𝑡𝑖}
1

𝛾]−1, 

= [1 + {exp(−𝛽0 − 𝑥𝑖𝛽𝑥) 𝑡𝑖}
1

𝛾]−1.    (48) 

 

2.8.4 Lognormal model 

The lognormal is a skewed distribution where the average values are low, variances are 

high and the values are not negative. The survival distributions of Hodgkin’s disease, 

chronic leukemia were analyzed via lognormal distribution, indicated positively 

skewed and with survival period distributed normally (Lee & Wang, 2003). In the 

lognormal, the hazard function increases from 0 to reach maximum and then decreases 

monotonically approaching 0 as t→ ∞. The survival function is given by: 

ℎ(𝑡) = 1 − Φ {
ln(𝑡)−𝜇

𝜎
},     (49) 

where Φ is the standard normal cumulative density function and 𝜇 = 𝛽𝑥. The hazard 

rate is given by: 

1

𝑡𝜎√2𝜋
 exp [-

1

2𝜎2
{

ln(𝑡)−𝜇2

1−Φ{
ln(𝑡)−𝜇

𝜎

}],      (50) 

and the hazard rate rises first then falls. The density function is given by: 
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𝑓(𝑡) =
1

𝑡𝜎√2𝜋
exp [−

1

2𝜎2
{ln(𝑡) − 𝜇2}] .  (51) 

However, the lognormal has no proportional hazard interpretation. Hence, its 

interpretation is in the AFT metric (Cleves, 2010). It assumes that ti ~lognormal (𝛽0,𝜎)  

and it has the cumulative distribution as given by: 

𝐹(𝑡) = Φ [
ln (t)−𝛽0

𝜎
],         (52) 

is the cumulative distribution function for the standard Gaussian(normal) distribution 

hence, 

ln(𝑡𝑖) = 𝑥𝑖𝛽𝑥 + ln (𝜏𝑖).       (53) 

The lognormal model transforms time into ln(time) and converts the problem into 

simple linear regression: 

𝐸{ln(𝑡𝑖) |𝑥𝑖} = 𝛽0 + 𝑥𝑖𝛽𝑥.       (54) 

The baseline survivor function is realized as: 

𝑆0(𝑡) = 1 − Φ{
ln (t)−𝛽0

𝜎
}.     (55) 

 

2.8.5 Exponential model 

This is the simplest parametric model. It assumes that the risk is constant over time. If 

X is a random variable, the exponential distribution is defined as: 

𝑋~𝐸𝑥𝑝(𝜆), 𝜆 > 0.      (57) 

The exponential distribution has a memoryless property which can be expressed as 

𝑃(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿|𝑋 ≥ 𝑥) = 𝑃(𝑋 < 𝛿), 

for a positive 𝛿. The probability to experience an event depends only on the length of 

the interval. The probability density function is then 

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥. 

The survival function is:  



32 
 

𝑆(𝑥) = ∫ 𝜆𝑒−𝜆𝑥
∞

𝑥

𝑑𝑥, 

= −𝑒−𝜆𝑥, 

= 0 − −𝑒−𝜆𝑥 

= 𝑒−𝜆𝑥.    (58) 

 

2.8.6 Accelerate failure time model 

The Accelerated Failure Time model is a linear regression model in which the response 

variable is the logarithm or known monotone transformation of a failure time (Lee & 

Wang, 2003). The accelerated failure time model describes a relationship between the 

survivor function of any two individuals. Taking 𝑇𝑖 to be a random variable denoting 

the failure time for the 𝑖𝑡ℎ subject, and let 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝 be the values of p covariates 

of the subject. The model is then given by, 

log 𝑇 = {𝛽0 + 𝛽1𝑋𝑖1 + 𝛽𝑝𝑋𝑖𝑝 + 𝛿𝜀𝑖},     (59) 

where 𝜀𝑖 ~ ℎ0(t), 𝜀𝑖 is a random disturbance term, 𝛽0,..., 𝛽𝑝 and σ are parameters to be 

estimated, ℎ0(t) is a known baseline survival, 𝑇𝑖 is actual survival times sometimes 

observed is a scale parameter and 𝑋𝑖 is a fixed P*1 vector of covariates and 𝑋𝑖 is 

assumed to affect log T linearly and no interactions. Moreover, σ is assumed to be 

constant and independent of 𝑋𝑖. The parametric accelerated failure time distribution is 

also assumed to be correctly specified. The survival function for the parametric baseline 

accelerated failure model is given as, 

S(𝑡𝑖) = 𝑆0{𝑒𝑥𝑝(−𝑋𝑖
𝑡𝛽) 𝑡𝑖,     (60) 

where 𝑆0(𝑡) is the baseline. These accelerated failure time models are named for the 

distribution of T rather than the distribution of e or log T. This is so because different 
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distributions have different implications for the shapes or hazard function (Cox & 

Oakes, 1996).  

 

2.9 Assessment of the model fitness 

When the model has been fitted, the adequacy of it needs to be assessed. There are a 

number of ways to check the adequacy, like using Cox-Snell, deviance among others. 

 

2.9.1 Cox –Snell residuals 

The Cox-Snell residuals is given by Cox and Snell (Cox & Oakes, 1984). The residuals 

for the 𝑖𝑡ℎ individual with the observed survival time 𝑡𝑖  is given as follows, 

𝑟𝑐𝑖 = exp(𝛽𝑋𝑖) 𝐻0(𝑡𝑖) = 𝐻𝑖(𝑡) = −𝑙𝑜𝑔𝑆̂𝑖(𝑡𝑖).  (61) 

Given that 𝐻0(𝑡𝑖) is an estimate of the baseline cumulative hazard function at time 𝑡𝑖 

and it was derived by Kalbfleish and Pretence (1973). 

Letting T be the continuous survival distribution S(t) with the cumulative hazard, 

H(t) = - log(S(t)).      (62) 

Then it follows that, 

𝑆𝑇(t)=exp(-H(t)).  

Taking Y = H(t) be the transformation of T based on cumulative hazard function. It 

follows that the survival function for Y is now given as: 

𝑆𝑦 = 𝑝(𝑃 > 𝑦) = 𝑝{𝐻(𝑡 > 𝑦)},    (63) 

𝑃(𝑇 > 𝐻𝑇
−1(𝑦)) = 𝑆𝑇(𝐻𝑇

−1(𝑦)) = exp (−𝐻𝑇(𝐻𝑇
−1(𝑦)) = exp (−𝑦). 

The new Y = H(t) has an exponential distribution with unit one. If the model is well 

fitted, the actual value 𝑆̂𝑖(𝑡𝑖) would have similar properties to those of 𝑆𝑖(𝑡𝑖). Therefore 

𝑟𝑐𝑖 = 𝑙𝑜𝑔𝑆̂𝑖(𝑡𝑖) will have a unit exponential distribution with 𝑓𝑅 = exp (−𝑟). 

Letting 𝑆𝑅(r) denote the survival function of Cox-Snell residuals 𝑟𝑐𝑖, then, 
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𝑆𝑅 = ∫ 𝑓𝑅 exp(−𝑥) 𝑑𝑥 = exp (−𝑟)
∞

𝑟
,     (64) 

and it follows that, 

𝐻𝑅(𝑟) = −𝑙𝑜𝑔𝑆𝑅(𝑟) = − log(exp) (−𝑟) = 𝑟.  (65) 

Hence a plot of  𝐻(𝑟𝑐𝑖) versus 𝑟𝑐𝑖 is used to check the fit of the model. This gives a 

straight line with a unit slope and zero intercept if the fitted model is correct. 

 

2.10 Checking for model goodness of fit 

There are a number of methods which are employed to check if a parametric distribution 

fits the observed data. The Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC) a statistical criterion used for comparing models and residuals plots can 

be used to check the goodness of fit for the models. 

 

2.10.1 Bayesian Information Criterion (BIC) 

Bayesian Information Criterion (BIC) is a criterion for model selection among a finite 

set of models i.e. the model with the lowest BIC is selected. Can be calculated using 

the following formula: 

  BIC = -2ln (L) + ln (n)*K, 

where n= sample size, K=number of parameters and L=Log-likelihood. 

 

2. 10.2 Akaike Information Criterion (AIC) 

The Akaike Information Criterion (AIC) proposed in Akaike (1974) is a measure of the 

goodness of fit of an estimated statistical model which compares the models which have 

been fitted. The AIC is an operation way of trading off the complex of an estimated 

model against how well the model fits the data. The AIC is defined by: 

AIC = -2ln (L) + 2k,      (66) 
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where L is the log likelihood, k is the number of covariates in the model. Lower values 

of the AIC suggest a better model. However, there is a difficulty in using AIC in the 

sense that there is no formal test statistically to compare different AIC values when two 

or more models have similar AIC values.  

 

2. 10.3 Residual plots 

The residual plots can be used to check the goodness of fit of the model. Among the 

useful plots is based on comparing the distribution of the Cox-Snell residuals with the 

unit exponential distribution. The Cox-Snell residual for 𝑖𝑡ℎ  individual with observed 

time, 𝑡𝑖 is defined as: 

𝑟𝑐𝑖 = 𝐻̂(𝑡𝑖|𝑥𝑖) = −log [𝑆̂𝑖(𝑡𝑖)𝑥𝑖],      (67) 

where 𝑡𝑖 is the observed survival time for individual i, 𝑥𝑖 is the vector covariate values 

for individual ii and 𝑆̂𝑖(𝑡𝑖) is the estimated survival function on the fitted model. The 

estimated survival function for the 𝑖𝑡ℎ individual is given by, 

𝑆̂𝑖(𝑡𝑖) = 𝑆𝜀𝑖(
𝑙𝑜𝑔𝑡−𝜇̂−𝛼̂𝑥𝑖

𝜎̂
),       (68) 

where 𝛼̂, 𝜇̂ and 𝜎̂ are the maximum likelihood estimator of a, m and s respectively. 

𝑆𝜀𝑖(𝜀) is the survival function of ɛ in the Accelerated Failure Time model given by,  

 

𝑆(𝑡𝑖|𝑥𝑖) = 𝑆0{exp(−𝑥𝑖𝛽𝑥) 𝑡𝑖}, 

and  

  (
𝑙𝑜𝑔𝑡−𝜇̂−𝛼̂𝑥𝑖

𝜎̂
) = 𝑟𝜀𝑖,        (69)  

is referred to as standard residuals. 
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CHAPTER 3  

RESEARCH DESIGN AND METHODOLOGY 

3.1 Study design 

The study was a retrospective cohort. Data for under-five children living with HIV who 

were on ART at Chiradzulu district hospital from July 2011 to July 2016 was analysed. 

Events were censored by 31st, July 2016. 

 

3.2 Study setting  

The study used data collected at Chiradzulu District Hospital, Boma ART clinic in 

Chiradzulu District. Chiradzulu has an estimated population of 356, 875 (NSO Malawi, 

2018), with HIV prevalence of 9.2% (MDHS, 2017). Chiradzulu district was the site of 

the first antiretroviral therapy (ART) program implemented in public facilities in 

Malawi, early 2001. By the end of June 2021, ART register indicated that there were 

over 28,500 patients at Boma ART Clinic. 

 

3.3 Study population 

Participants in this analysis were children under the age of five years who started 

antiretroviral therapy from July 2011 to July 2016.  

 

 3.4 Data collection  

The data analysed in this study were sourced from under five ART patient cards. 

Authorization to use the data set was obtained through the Chiradzulu District Hospital 

Research and Ethics Committee. Two clerical statisticians gathered the data from the 
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patients’ ART cards (see appendix 1 and appendix 2) with the help from ART clinical 

nurse. Guardians of under five children living with HIV were also traced and asked on 

their level of education, occupation, marital status and confirmation on the place of 

residence during clinic visits. Under-five children who were lost to follow up and alive 

by the end of study were censored.  

 

3.5 Variables description 

3.5.1 Dependent variable 

The primary outcome of the study was survival time measured in months from ART 

initiation till death. The event of interest was death otherwise, right censored. 

 

3.5.2 Independent variables 

The study used pre-selected covariates based on the existing literature on the significant 

determinants of child mortality. The covariates ranged from weight of a child in 

kilograms (kg), height of a child in centimetres (cm), residence, sex for of a child, 

mothers’ education level, mothers’ occupation status and mothers’ marital status. 

Weight and height were considered because they help to determine whether a child is 

having nutritious diet or not.  

 

3.6 Statistical analyses 

Statistical analyses were performed using the Stata version 14 software for windows. 

The effects of the pre-selected variables were estimated using a Cox proportional 

hazards model. The survival analysis to estimate the under-five mortality rate in 

Chiradzulu was performed using parametric models and the study compared two 
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survival analysis models, Cox and parametric models through the Akaike Information 

Criterion (AIC). Kaplain Meier as well as logrank methods were also used. 

 

3.6.1 Kaplan-Meier method 

Kaplan meier method was used to produce graphs of the Kaplan-Meier estimates of the 

survival function of under-five children for all preselected categorical variables: 

residence, sex for child, mother’s education level, occupation status and marital status. 

The Kaplan-Meier estimate is done on categorical variables only and its assumption is 

that the distribution of censoring times is independent of exact survival times. 

 

3.6.2 Logrank method 

The logrank test was used to find out whether the true survival curves differ from group 

to group through this hypothesis testing. 

H0: No differences between survival times curves 

H1: There is a difference between survival times 

The test was applied to pre-selected categorical variables only to determine statistical 

differences between groups. 

 

 3.6.3 Modelling strategies 

3.6.3.1 Cox regression model 

In this study, Cox regression model was used with the following covariates: X= (x1= 

sex, x2 =residence, x3 = height, x4 = weight, x5 = mother education, x6 = mother 

occupation, x7 = marital status). Let T denote a random variable that describes survival 

time from ART initiation into the study to death where h0(t) is the baseline hazard 

function. The Cox proportional hazard model fitted was: 
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ℎ(𝑡) = ℎ0(𝑡)𝑒𝛽𝑠𝑒𝑥∗𝑆𝑒𝑥+𝛽𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒∗𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒+𝛽ℎ𝑒𝑖𝑔ℎ𝑡∗𝐻𝑒𝑖𝑔ℎ𝑡+ 𝛽𝑤𝑒𝑖𝑔ℎ𝑡 

∗ 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽𝑚𝑜𝑡ℎ𝑒𝑟 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 ∗ 𝑀𝑜𝑡ℎ𝑒𝑟 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽𝑚𝑜𝑡ℎ𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 ∗

𝑀𝑜𝑡ℎ𝑒𝑟 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 + 𝛽𝑚𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠 ∗ 𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑆𝑡𝑎𝑡𝑢𝑠. 

 

3.6.3.2  Cox proportional hazard assumptions testing  

Scaled Schoenfeld residuals was used to test the proportional hazards assumption for 

multivariable Cox regression model. A non-zero slope is an indication of violation of 

the proportion hazard assumption.  

 

3.6.3. 3 Cox regression model goodness of fit test 

The Cox model fit was evaluated using Cox –Snell residuals. If the hazard rate follows 

the 45-degree line, it suggests that its approximation has an exponential distribution 

with a hazard rate of one, and then the model fits the data well. 

 

3.6.3.4  Parametric models 

In the study, Weibull, Exponential, Gompertz, Loglogistics and Lognormal parametric 

models were fitted. These were also compared with Cox proportional hazards model to 

determine better model based on the decision of having a minimum Akaike Information 

Criterion (AIC) value.  

 

3. 6.3.4.1 Weibull model 

In this study, to estimate the effect size of covariates, Weibull model was fitted in the 

following manner: 

ℎ(𝑡|𝑥) = 𝜆𝑝(𝑡)𝑝−1 exp(𝛽𝑠𝑒𝑥 ∗ 𝑆𝑒𝑥 + 𝛽𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 ∗ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 + 𝛽ℎ𝑒𝑖𝑔ℎ𝑡 ∗

𝐻𝑒𝑖𝑔ℎ𝑡 + 𝛽𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 ∗ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 + 𝛽𝑚𝑜𝑡ℎ𝑒𝑟 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 ∗
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𝑀𝑜𝑡ℎ𝑒𝑟 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽𝑚𝑜𝑡ℎ𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 ∗

𝑀𝑜𝑡ℎ𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛+𝛽𝑚𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠 ∗ 𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠).   

 

3. 6.3.4.2 Gompertz model 

In this study, hazard function for an under-five child using the Gompertz distribution 

was estimated by: 

ℎ(𝑡|𝑥) = 𝜆 exp(𝛾𝑡) exp(𝛽𝑠𝑒𝑥 ∗ 𝑆𝑒𝑥 + 𝛽𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 ∗ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 + 𝛽ℎ𝑒𝑖𝑔ℎ𝑡 ∗

𝐻𝑒𝑖𝑔ℎ𝑡 + 𝛽𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽𝑚𝑜𝑡ℎ𝑒𝑟 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 ∗ 𝑀𝑜𝑡ℎ𝑒𝑟 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 +

𝛽𝑚𝑜𝑡ℎ𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 ∗ 𝑀𝑜𝑡ℎ𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛+𝛽𝑚𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠 ∗ 𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠).  

 

3. 6.3.4.3  Log-logistic model 

An estimation of the effect size of covariates by log logistic model in this study was 

fitted using the following formula: 

ℎ(𝑡) =
1

(1+𝜆𝑡𝑥)
,        

𝑓𝑜𝑟 𝑥𝑖:   𝑥1 = 𝑆𝑒𝑥, 𝑥2 = 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒, 𝑥3 = 𝐻𝑒𝑖𝑔ℎ𝑡, 𝑥4 = 𝑊𝑒𝑖𝑔ℎ𝑡, 𝑥5 =

𝑀𝑜𝑡ℎ𝑒𝑟 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑥6 = 𝑀𝑜𝑡ℎ𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑥7 = 𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠. 

 

3. 6.3.4.4 Lognormal 

The survival function for lognormal model in this study was fitted by: 

ℎ(𝑡) = 1 − Φ {
ln(𝑡) − 𝜇

𝜎
},   

where Φ = standard normal cumulative density function and  

𝜇 = 𝛽𝑥𝑖   𝑓𝑜𝑟 𝑥1 = 𝑆𝑒𝑥, 𝑥2 = 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒, 𝑥3 = 𝐻𝑒𝑖𝑔ℎ𝑡, 𝑥4 =

𝑊𝑒𝑖𝑔ℎ𝑡, 𝑥5 = 𝑀𝑜𝑡ℎ𝑒𝑟 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑥6 = 𝑀𝑜𝑡ℎ𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑥7 =

𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠 .       
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The lognormal model transforms time into ln(time) and converts the problem into 

simple linear regression: 

𝐸{ln(𝑡𝑖) |𝑥𝑖} = 𝛽0 + 𝛽𝑥𝑥𝑖. 

3. 6.3.4.5 Exponential 

In the study, the hazard function for the exponential model was fitted in the following 

manner: 

ℎ(𝑡|𝑥) = 𝜆 exp(𝛽𝑠𝑒𝑥 ∗ 𝑆𝑒𝑥 + 𝛽𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 ∗ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 + 𝛽ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝐻𝑒𝑖𝑔ℎ𝑡 +

𝛽𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 + 𝛽𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 ∗ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 + 𝛽𝑚𝑜𝑡ℎ𝑒𝑟 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 ∗

𝑀𝑜𝑡ℎ𝑒𝑟 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽𝑚𝑜𝑡ℎ𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 ∗ 𝑀𝑜𝑡ℎ𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛+𝛽𝑚𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠 ∗

𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑠𝑡𝑎𝑡𝑢𝑠). 

 

3.7 Model comparison 

In this study the Akaike Information Criterion (AIC), a statistical criterion was used to 

compare models. 

 

3.7.1 Akaike Information Criterion (AIC) 

This Akaike Information Criterion (AIC) was used in this study. Thus, the lower values 

of the AIC suggested a better model.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Exploratory Analysis 

A total number of 186 under-five children living with HIV entered to this study. The 

median age at ART enrolment was 3years. The median time to death for the under five 

children living with HIV on ART was 16 months. Out of 186 under five children living 

with HIV on ART, 56 (30.0%) died during the study while 130 (70.0%) were censored. 

Out of 130 censored participants, 30 (16.15%) were lost to follow up and 100 (53.85%) 

were alive by the end of the study. Table 1 shows a summary of descriptive statistics 

for of under five children living with HIV on ART at Chiradzulu District Hospital, 

Boma ART Clinic. 
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Table 1: Descriptive summary of variables 

        

Interquartile 

Range 

Continuous 

Variables Frequency Median 

Std. 

Dev 25th 75th 

Age (years)  3.00 0.91 2.00 4.00 

Weight (kg)  10.00 8.16 8.90 12.00 

Height (cm)  96.00 16.04 79.00 104.00 

Time to Death 

(Months)  16.00 4.14 12.00 19.20 

        

Categorical 

variables n (%)      

Sex       

Male 84(45.16)      

Female 102(54.84)      

 

Residence       

Semi Urban 77(41.4)      

Rural 109(56.8)      

 

Mother Education       

No education 34(18.28)      

Primary school 73(39.25)      

Secondary school 64(34.41)      

Tertiary 15(8.06)      

 

Mother Occupation       

Not working 98(52.69)      

Working 88(47.31)      

 

Marital Status       

Single 72(38.71)      

Married 37(19.89)      

Divorced 77(40.40)      

        

Outcome Variables       

Dead 56(30.00)      

Censored                                   

Lost to follow up           30(16.15)     

Alive 100(53.85)     

                       

 



44 
 

4.2 Log rank tests for categorical variables  

The results of log rank tests showed that residence, mother education and mother 

occupation were statistically significant. There were median survival differences in the 

groups of these categorical variables. The logrank tests were applied to categorical 

variables only. 

 

4.3 Kaplan Meier survival curves for categorical variables 

The Kaplan-Meier survival estimates results from Figure 1 have shown that under-five 

children living with HIV whose mothers work have a better median survival rate as 

compared to under-five children living with HIV on ART whose mothers do not work. 

Similar results were obtained from residence (survival rate for under-five children was 

better in urban than semi-urban) and mother’s education level (survival rate better in 

under-five children with educated mothers as compared to under-five children with un-

educated mothers). The different median survival rates were observed in the categories. 

 

 

Figure 1: Kaplan Meier survival curves for mothers’ occupation 
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4.4 Cox proportional hazard model assumption tests 

 4.4.1 Proportional hazard test by scaled Schoenfeld residuals 

 In all the plots of scaled Schoenfeld residuals for all pre-selected covariates (weight, 

height, residence, sex, mothers’ education level, occupation status and marital status), 

there were almost flat lines being realised as illustrated in Figure 2 for mother’s 

education levels. This is an indication that there was no violation of hazard 

proportionality by all the variables.  

 

 

Figure 2: Graph of Scaled Schoenfeld residuals for Mothers’ Education levels  

The rest of the variables yielded similar graph results as of scaled Schoenfeld residuals 

for mother’s education levels. 

 

4.4.2 Cox Model bivariate and multivariate analysis 

Table 2 indicates risk factors associated with survival rate of under-five children on 

antiretroviral therapy at Chiradzulu district hospital. 
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Table 2: Cox proportional hazards model: risk factors of under-five mortality 

 BIVARIATE    MULTIVARIATE 

COVARIATE HR  95% CI   AHR  95% CI 

Sex        
Male (Reference)       

Female 1.40  [0.67, 2.94]     

        

Residence        
Semi Urban (Reference)    Reference   

Rural 2.23  [1.95, 5.23]  1.88  [1.79, 4.50] 

        
Mother 

Education        
No Education (Reference)    Reference   

Primary  0.90  [0.39, 0.99]  0.93  [0.40, 0.95] 

Secondary  0.34  [0.11, 0.65]  0.37  [0.10, 0.85] 

Tertiary 0.00 - -  0.00  - 

        
Mother 

Occupation        
Not working (Reference)    Reference   

Working 0.37  [0.16, 0.83]  0.92  [0.32, 0.99] 

        
Marital Status        

Single (Reference)       
Married 0.89  [0.32, 2.35]     

Divorced 0.75  [0.33, 1.72]     

        

        
Weight  0.85  [0.71, 0.91]  0.86  [0.72, 0.98] 

        
Height 0.99  [0.97, 1.01]         

 

Under five children living with HIV from rural areas were significantly associated with 

higher hazard of mortality than the hazard of under five children living with HIV from 

semi-urban areas in both bivariate analysis (HR: 2.23; 95% CI: 1.95, 5.23) and 

multivariate analysis (AHR: 1.88; 95% CI: 1.79, 4.50). 
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Under-five children living with HIV whose mothers have primary education were 

significantly associated with lower hazard of death than under-five children living with 

HIV whose mothers are not educated in both bivariate analysis (HR=0.34; 95% CI= 

0.39, 0.99) and multivariable analysis (AHR: 0.93; 95% CI: 0.40, 0.95). Under-five 

children living with HIV whose mothers have secondary education are significantly 

associated with lower hazard of mortality than under-five children living with HIV 

whose mothers are not educated in both bivariate analysis (HR=0.34; 95% CI= 0.11, 

0.65) and multivariable analysis (AHR: 0.37; 95% CI= 0.10, 0.85). Under-five children 

living with HIV whose mothers have tertiary education had 100% lower hazard of 

mortality than under-five children living with HIV whose mothers are not educated in 

both bivariate analysis (HR=0.0)and multivariable analysis (AHR: 0.00). 

 

The hazard of death was less for under-five children living with HIV whose mothers 

work by a factor of (HR: 0.37; 95% CI: 0.16, 0.83) and (AHR= 0.92; 95% CI: 0.32, 

0.99) for bivariate and multivariate respectively as compared to under-five children 

living with HIV whose mothers do not work.  

 

Finally, weight was significant in both univariate analysis (HR = 0.85; 95% CI= 0.71, 

0.91) and multivariable analysis (AHR = 0.86; 95% CI= 0.72, 0.98). For each additional 

kg of weight, the hazard of death in under-five children living with HIV reduces by 9% 

and 14% in bivariate and multivariable analyses respectively.  

 

The estimated multivariable Cox Proportion hazard model became: 

 

ℎ(𝑡|𝑥) = ℎ0(𝑡) exp(β1𝑥1,1 + β2𝑥2,2 + β3𝑥3,2 + β3𝑥3,3 + β5𝑥3,4 + β6𝑥4,2), 
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where 

ℎ0(𝑡) = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ℎ𝑎𝑧𝑎𝑟𝑑, 𝑥1,1 = 𝑊𝑒𝑖𝑔ℎ𝑡 , 𝑥2,2 = 𝑅𝑢𝑟𝑎𝑙 , 𝑥3,2 =

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑥3,3 = 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛,  𝑥3,4 = 𝑇𝑒𝑟𝑡𝑖𝑎𝑟𝑦 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 

& 𝑥4,2 = 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 

 

4.4.3 The goodness of fit for the Cox model 

As illustrated in figure 3, the hazard rate of the Cox –Snell residuals for under five 

children on ART follows the 45-degree line. This suggests that the model fitted the data 

well. 

 

Figure 3: The goodness of model fit for Cox model  

Overall, the final model fitted the data very well as illustrated in Figure 3. 

 

4.5 Parametric models fitting 

Tables 3 and 4 illustrates the hazard ratio estimates for parametric models in the 

analysis of bivariate and multivariable regression models. Table 5 illustrates the effect 

sizes of covariates in the parametric regression model of the multivariable analyses 

while Table 6 shows estimates for parametric model parameters.
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Table 3: Bivariate Parametric regression models with hazard ratio estimates 

  Weibull Exponential Gompertz Loglogistic Lognormal 

Covariate  HR  95% CI HR  95% CI HR  95% CI Coeff  95% CI Coeff  95% CI 

Weight 0.83  [0.68, 0.98] 0.80  [0.66, 0.94] 0.83  [0.70, 0.99] 0.07  [ 0.01, 0.15] 0.08  [0.01, 0.16] 

                

Residence                

Semi-Urban Reference Reference Reference Reference Reference 

Rural 2.22 
 

[1.95, 5.20] 2.22 
 

[1.95, 5.21] 2.24 
 

[1.96, 5.24] -0.30 
 

[-0.64, -0.04] -0.32 
 

[-0.68, -0.04] 

Education                

No  Reference Reference Reference Reference Reference 

Primary 0.91  [0.40, 0.99] 0.81  [0.36, 0.99] 0.96  [0.42, 0.98] 0.04  [0.01, 0.40] 0.04  [0.01, 0.55] 

Secondary 0.55  [0.36, 0.86] 0.51  [0.33, 0.81] 0.57  [0.37, 0.87] 0.24  [0.04, 0.44] 0.28  [0.06, 0.49] 

Tertiary 0.00  [0.00, 0.00] 0.00  [0.00, 0.00] 0.00  [0.00, 0.00] 5.898  [1.98, 8.7] 3.49  [2.16, 5.13] 

                

Working Status                

Not Working Reference Reference Reference Reference Reference 

Working 0.39  [0.17, 0.87] 0.41  [0.18, 0.92] 0.38  [0.17, 0.86] 0.34  [0.02, 0.66] 0.32  [0.23, 0.67] 
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The results from the fitted bivariate regression models in Table 3 have indicated that the 

continuous variable, weight, categorical variables residence (semi-urban and rural), mothers’ 

education level (no education, primary, Secondary, tertiary) and mother’s occupation (not 

working and working) significantly affect the survival rate of under-five children on 

antiretroviral therapy.  
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Table 4: Multivariable Parametric regression models with hazard ratio  

Covariate  

Weibull Exponential Gompertz Loglogistic Lognormal 

HR  95% CI HR  95% CI HR  95% CI 

Coef

f  95% CI 

Coef

f  95% CI 

Weight 

0.8

4  

[0.71, 

0.99] 

0.8

1  

[0.69, 

0.96] 

0.8

4  

[0.71, 

0.92] 0.07  [0.01, 0.15] 0.07  

[0.01, 

0.15] 

                

Residence                

Semi-Urban Reference Reference Reference Reference Reference 

Rural 

1.9

4  

[1.11, 

4.61] 

1.9

2  

[1.01, 

4.54] 

1.9

3  

[1.11, 

4.59] -0.25  

[-0.62, -

0.11] -0.25  

[-0.63, -

0.13] 

                

Education                

No  Reference Reference Reference Reference Reference 

Primary  

0.9

1  

[0.10, 

0.99] 

0.8

1  

[0.36, 

0.98] 

0.9

6  

[0.42, 

0.99] 0.04  [0.32, 0.40] 0.04  

[0.37, 

0.45] 

Secondary  

0.3

4  

[0.09, 

0.99] 

0.3

1  

[0.09, 

0.75] 

0.3

6  

[0.10, 

0.85] 0.42  [0.14, 0.98] 0.46  

[0.11, 

1.03] 

Tertiary  

0.0

0  

[0.00, 

0.00] 

0.0

0  

[0.00, 

0.00] 

0.0

0  

[0.00, 

0.00] 5.898  [1.98, 9.77] 3.49  

[0.16, 

5.13] 

                

Working 

Status                

Not Working Reference Reference Reference Reference Reference 

Working 

0.9

9  

[0.34, 

2.85] 

1.0

0  

[0.36, 

2.82] 

0.9

8  

[0.85, 

0.99] -0.01  

[-0.45, -

0.43] -0.07  

[-0.52, -

0.38] 
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The results from the fitted univariate regression models in Table 4 shows the association of 

covariates by hazard ratio of continuous variable, weight and categorical variables residence 

(semi-urban and rural), mothers’ education level (no education, primary, secondary and 

tertiary) and mother’s occupation (not working and working). 
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Table 5: Parametric model coefficient estimates 

Covariate  

Weibull Exponential Gompertz Loglogistic Lognormal 

HR  95% CI HR  95% CI HR  95% CI Coeff  95% CI Coeff  95% CI 

Weight 0.84  

[0.71, 

0.99] 0.81  

[0.69, 

0.96] 0.84  

[0.71, 

0.92] 0.07  [0.01, 0.15] 0.07  [0.01, 0.15] 

                

Residence                

Semi-Urban Reference Reference Reference Reference Reference 

Rural 1.94  

[1.11, 

4.61] 1.92  

[1.01, 

4.54] 1.93  

[1.11, 

4.59] -0.25  

[-0.62, -

0.11] -0.25  

[-0.63, -

0.13] 

                

Education                

No  Reference Reference Reference Reference Reference 

Primary  0.91  

[0.10, 

0.99] 0.81  

[0.36, 

0.98] 0.96  

[0.42, 

0.99] 0.04  [0.32, 0.40] 0.04  [0.37, 0.45] 

Secondary  0.34  

[0.09, 

0.99] 0.31  

[0.09, 

0.75] 0.36  

[0.10, 

0.85] 0.42  [0.14, 0.98] 0.46  [0.11, 1.03] 

Tertiary  0.00  

[0.00, 

0.00] 0.00  

[0.00, 

0.00] 0.00  

[0.00, 

0.00] 5.898  [1.98, 9.77] 3.49  [0.16, 5.13] 

                

Working 

Status                

Not Working Reference Reference Reference Reference Reference 

Working 0.99  

[0.34, 

2.85] 1.00  

[0.36, 

2.82] 0.98  

[0.85, 

0.99] -0.01  

[-0.45, -

0.43] -0.07  

[-0.52, -

0.38] 

Cons 0.00  

[0.00, 

0.01] 0.08  

[0.01, 

0.44] 0.01  

 [0.00, 

0.06]  2.65  [1.55, 3.74] 2.70  [1.51, 3.90] 
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Table 5 shows the estimated effect sizes of the covariates through Weibull, Exponential, Gompertz Loglogistic and Lognormal fitted 

models. 

Table 6: Coefficient estimates for parametric model parameters 

  Weibull Exponential Gompertz Loglogistic Lognormal 

Parameter Coeff  95% CI Coeff 

 

95% CI Coeff 

 

95% CI Coeff 

 

95% CI Coeff 

 

95% CI 

/n_p 0.96  [0.63, 1.29] -  - -  - -  - -  - 

p 2.60 

 

[1.87, 3.62] -  - -  - -  - -  - 

1/p 0.38 

 

[0.28, 0.53] -  - -  - -  - -  - 

/gamma -  - -  - 0.18   [1.00, 0.25]  -  - -  - 

/ln_gam -  - -  - -  - -1.00  [-1.32,-0.67]  -  - 

gamma -  - -  - -  - 0.37  [0.27, 0.51] -  - 

 /ln_sig -  - -  - -  - -  - -0.29  [-0.58, -0.00] 

 sigma -  - -  - -  - -  - 0.75  [1.00, 0.56] 

 

Table 6 shows the coefficients of parameters for Weibull, Exponential, Gompertz, Loglogistic and Lognormal models except Exponential 

model. The Exponential model does not have parameters. The parameter estimates provides shapes and location for the graphs. 
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4.6 Comparison of Cox and parametric survival models  

In this study the Akaike Information Criterion (AIC), a statistical criterion was applied. 

 

4.6.1 Akaike Information Criterion (AIC) 

The study used the Akaike Information Criterion to select the best fit model among cox 

and parametric models which were fitted. Weight, residence, mothers’ education level 

and mother’s occupation were used in final model. Table 7 shows AIC statistics for the 

five parametric models and Cox model. 

 

Table 7: AIC values for parametric and Cox models 

Model Observation ll(null) ll(Model)   df AIC 

Weibull 186 -77.18 -68.90 6 149.80 

Exponential 186 -89.86 -80.13 5 186.39 

Gompertz 186 -76.73 -68.76 6 149.53 

Loglogistic 186 -77.69 -70.08 6 152.15 

Lognormal 186 -78.22 -70.90 6 153.80 

Cox 186 -133.39 -125.74 4 259.48 

 

Table 7 illustrates Gompertz model with lowest AIC value of 149.53. With the 

achievement of the lowest AIC value (149.53), Gompertz is the proposed model for 

predicting survival of under-five children living with HIV on ART in Chiradzulu 

district. Gompertz model became: 

ℎ(𝑡|𝑥𝑖) = 𝜆exp(𝛾) exp (β1𝑥1,1 + β2𝑥2,2 + β3𝑥3,2 + β3𝑥3,3 + β5𝑥3,4 + β6𝑥4,2), 

where 
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𝛾 = 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝜆 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑥1,1 = 𝑊𝑒𝑖𝑔ℎ𝑡, 𝑥2,2 =

𝑅𝑢𝑟𝑎𝑙, 𝑥3,2 = 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑥3,3 = 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑥3,4 =

𝑇𝑒𝑟𝑡𝑖𝑎𝑟𝑦 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑥4,2 = 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 

 

As illustrated in figure 4, a graph of Gompertz survival function shows that 70% of 

under five children who were on ART survived during the study.  

 

Figure 4: Gompertz survival rate graph for under-five children  

 

4.2 Discussion 

Apprehension of the survival patterns of under-five ART patients and determinants for 

survival is important to the development and implementation of HIV programmes for 

under five children hence, there is a clear need for local evidence about the burden of 

disease in childhood as well as determining best models for data analysis. 

 

This study demonstrated that parametric models are best models as compared to the 

Cox model. This concurs with previous studies conducted by (Nardi et al., 2003). This 

is on the grounds that parametric models (Exponential, Weibull, Gompertz, lognormal 

and loglogistic), especially Gompertz model had a smallest AIC value among 
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Exponential, Weibull, lognormal and loglogistic while Cox model had the largest value. 

Akaike Information Creterion (AIC) recommends choosing the model with the lower 

AIC without stating the magnitude of the difference (Akaike, 1974). This result also 

correlates report by Stanley et al. (2016). The study found that parametric models have 

better performance than the Cox models. In addition, the adequacy of the Gompertz 

model was assessed using Cox- Snell residuals as illustrated in figure 3. The results 

showed that the hazard function followed the 45-degree line very closely. This implies 

that the Gompertz model is an appropriate and worth model to be used for modelling 

the survival of under-five children living with HIV on ART in Chiradzulu district. 

 

Another objective of this study was to examine the extent to which risk factors influence 

the survival of under-five children living with HIV on ART in Chiradzulu district. The 

results suggest that the hazard of death for under-five children who are on ART depends 

greatly on a number of socio-economic, demographic and health-related variables, such 

as place of residence mother educational level, occupation status and weight of child. 

 

The study suggests that mortality rates are higher in rural areas. This concurs with 

previous studies in and outside Nigeria (Morakinyo et al., 2017). This is on the ground 

that those living in the urban areas have access to improved water supply, improved 

sanitation facilities, unlimited access to healthcare as well as other social and economic 

services (Dejene et al., 2013). This finding also correlates with result reported in 

previous study (Adekambi et al., 2011). Rural areas are usually far away from health 

facilities hence poor health care services.  
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Occupation of mother is also another factor influencing under-five child survival rate 

in this study. The study found evidence that mortality risk might be lower in group of 

under-five children with working mothers as compared to the group of under-five 

children with non-working mothers. This was consistent with the findings by (Bello et 

al., 2014). The households with working mothers have better housing conditions, better 

nutrition, more empowerment and hence, they may be able to afford better medical 

attention and care thus, significantly enhancing the survival rate of all their children 

(Wegbom et al., 2019).  

 

The study also discovered that under-five children living with HIV with low body 

weight are associated with increased hazard of death. As found in another study, the 

greatest risk of mortality occurred in the first 12 months of treatment (Gesesew, 2018) 

among children who were underweight at ART initiation and among infants (Mutanga, 

2019). These under-five children with more weight have better nutrition as compared 

to those under five children with low body weight (Johannes Sen et al., 2008).  

 

Finally, mother’s education had a significant relationship with child survival rate in this 

study. Higher risks of death for under-five children were identified among the 

uneducated mothers as compared to educated mothers (mothers with primary, 

secondary and tertiary education). This is consistent with the findings by Khan and 

Awan (2017). A possible explanation could be that educated mothers have better 

socioeconomic status, better knowledge on family health and childcare, preventive 

care, effective use of modern health services and good management of child illness 

(Caldwell, 1994). Education additionally changes the customary and social family 

relationships as regards decision making and engages the mothers in several issues like 
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childcare which plays a role in reducing child mortality (O’Toole, 1994). Higher 

mother’s education tends to have a lower hazard than those with lower education and 

mothers with higher education have a higher desire to seek information or knowledge 

about health care (Nurmalasari et al., 2019). 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The findings from this study have essential district policy implications, particularly in 

monitoring public health interventions which need to ensure a consistent decline in 

child mortality rates towards the achievement of the SDG 3. The study analysed and 

then, identified the socioeconomic, geographical and health-related factors that might 

influence the survival rate of under-five children on antiretroviral therapy in 

Chiradzulu. The results from the analyses showed that mother educational level, 

occupation status, place of residence and weight of a child during antiretroviral therapy 

might influence the survival rate of under-five children in Chiradzulu. These findings 

suggest that under-five survival rate is greatly associated with socio-economic, 

geographical and health related factors. The study determined Gompertz, a parametric 

model, as the best model for predicting survival rate of under-five children on 

antiretroviral therapy as compared to Cox model. 

 

5.2 Recommendations 

Recommendations from this study are that, it is necessary for the readers to understand 

the identified factors influencing the survival rate of under five children to be directions 

for future studies with plans to design study procedures that can explain confounders. 

Further still, this study’s data is from Chiradzulu district hence, it is recommended that 

these results should be substantiated by similar survival studies from other parts of the 

district to generalize the results to other individuals in the country. Finally, researchers 
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should check the underlying assumptions of Cox model before using it in order to use 

a proper models during analysis.   
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APPENDICES 

APPENDIX 1: Commands for data analysis 

use "F:\New folder (7)\RESEARCH 

cONCEPT\WORKING\THESIS\Revised_Dataset_14Nov2019.dta" 

stset Time_months , failure( Died ) 

summarize Time_months 

summarize Time_months, detail 

sts graph, na 

**Distribution graphs 

histogram Age_0, freq normal 

histogram Weight_0, freq normal 

histogram Height_0, freq normal 

 

stvary //checking time varying variables 

**Descriptive 

tab Sex  

tab Residence  

tab M_Education  

tab M_Occupation  

tab Marital_Status  

tab Died 

*** 

tabstat Age_0, statistics (mean median sd iqr) 

tabstat Weight_0, statistics (mean median sd iqr) 

tabstat Height_0, statistics (mean median sd iqr) 

***** 

sum Age_0, detail 

sum Height_0, detail 

sum Weight_0, detail 

**Defining variables 

label define Sex 1 "Male" 2 "Female" 

label values Sex Sex 

 



71 
 

label define Residence 1 "Semi Urban" 2 "Rural" 

label values Residence Residence 

 

label define Mother_Education 1 "No Education " 2 "Primary Education" 3 

"Secondary Education" 4 "Tertiary" 

label values M_Education Mother_Education 

 

label define Mother_Occupation 1 "Not working" 2 "Working" 

label values M_Occupation Mother_Occupation 

 

label define Marital_Status 1 "Single" 2 "Married" 3 "Divorced" 

label values Marital_Status Marital_Status 

 

**Table 4.1 Descriptive Summary of Explanatory Variables 

tab Sex Died, row 

tab Residence Died, row 

tab M_Education Died, row 

tab M_Occupation Died, row 

tab Marital_Status Died, row 

sum Age_0, detail //report mean and standard deviation 

sum Height_0 , detail //report mean and stsndard deviation 

sum Weight_0 , detail //report mean and stsndard deviation 

 

**Table 4.2 Association between Death and Covariates 

tab Sex Died, chi2 

tab Residence Died, chi2 

tab M_Education Died, chi2 

tab M_Occupation Died, chi2 

tab Marital_Status Died, chi2 

ttest Age_0, by(Died) 

ttest Height_0, by(Died) 

ttest Weight_0, by(Died) 

tab Age_0 Died, chi2 

sts test Residence, logrank 
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sts graph, by(Residence)  

 

sts test Sex, logrank 

sts graph, by(Sex) 

 

sts test M_Education, logrank 

sts graph, by(M_Education) 

 

sts test M_Occupation, logrank 

sts graph, by(M_Occupation) 

 

sts test Marital_Status, logrank 

sts graph, by(Marital_Status) 

 

//Cox Proportional Hazard Models with one predictor variables  

stcox Age_0, nohr 

stcox Height_0, nohr 

stcox Weight_0, nohr 

 

//Model Building  

//UNIVARIATE COX PROPORTIONAL HAZARD MODELS / 

stcox Sex 

stcox Residence 

stcox Age_0 

stcox Height_0  

stcox Weight_0  

stcox M_Education 

stcox M_Occupation  

stcox Marital_Status 

 

stcox i.Sex 

stcox i.Residence 

stcox Age_0 

stcox Height_0  
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stcox Weight_0  

stcox i.M_Education 

stcox i.M_Occupation  

stcox i.Marital_Status 

 

stcox Residence, nohr 

stcox M_Education, nohr 

stcox M_Occupation, nohr  

 

//MULTIVARIATE COX PROPORTIONAL HAZARD MODELS  

stcox i.Residence i.M_Education i.M_Occupation Weight_0, nolog 

stphplot, by(Residence) 

stcoxkm, by(Residence) separate legend(cols(1)) 

stcoxkm, by(M_Education) separate legend(cols(1)) 

stphplot, by(M_Education) 

stphplot, by(M_Occupation)  

stcoxkm, by(M_Occupation) separate legend(cols(1)) 

 

//Tests of proportionalhazards assumption 

stcox  Weight_0 Residence, nolog 

estat phtest, detail 

 

stcox  Weight_0 M_Education, nolog 

estat phtest, detail 

 

stcox  Weight_0 M_Occupation, nolog 

estat phtest, detail 

 

//Cox AIC test  

stcox  Weight_0 Residence M_Education M_Occupation, nolog 

estat ic 

 

//multilevel GLOBAL TEST 

stcox  Weight_0 i.Residence i.M_Education i.M_Occupation, nolog 
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estat phtest, detail 

 

//COMPARING PARAMETRIC SURVIVAL MODELS UNIVARIATE  

streg Weight_0, distribution(weibull)  

streg Weight_0, distribution(exponential)  

streg Weight_0, distribution(gompertz)  

streg Weight_0, distribution(loglogistic)  

streg Weight_0, distribution(lognormal)  

 

streg Age_0, distribution(weibull)  

streg Age_0, distribution(exponential)  

streg Age_0, distribution(gompertz)  

streg Age_0, distribution(loglogistic)  

streg Age_0, distribution(lognormal) 

 

streg Height_0, distribution(weibull)  

streg Height_0, distribution(exponential)  

streg Height_0, distribution(gompertz)  

streg Height_0, distribution(loglogistic)  

streg Height_0, distribution(lognormal) 

 

streg i.Sex, distribution(weibull)  

streg i.Sex, distribution(exponential) 

streg i.Sex, distribution(gompertz)  

streg i.Sex, distribution(loglogistic)  

streg i.Sex, distribution(lognormal) 

 

streg i.Residence, distribution(weibull)  

streg i.Residence, distribution(exponential) 

streg i.Residence, distribution(gompertz)  

streg i.Residence, distribution(loglogistic)  

streg i.Residence, distribution(lognormal) 

streg i.M_Education, distribution(weibull)  

streg i.M_Education, distribution(exponential)  
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streg i.M_Education, distribution(gompertz)  

streg i.M_Education, distribution(loglogistic) 

streg i.M_Education, distribution(lognormal)  

 

streg i.M_Occupation, distribution(weibull) 

streg i.M_Occupation, distribution(exponential) 

streg i.M_Occupation, distribution(gompertz)  

streg i.M_Occupation, distribution(loglogistic) 

streg i.M_Occupation, distribution(lognormal)  

 

streg i.Marital_Status, distribution(weibull) 

streg i.Marital_Status, distribution(exponential) 

streg i.Marital_Status, distribution(gompertz)  

streg i.Marital_Status, distribution(loglogistic) 

streg i.Marital_Status, distribution(lognormal)  

 

//COMPARING PARAMETRIC SURVIVAL MODELS MULTIVARIATE // 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(weibull) 

nolog 

estat ic 

 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(exponential) 

nolog 

estat ic 

 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(gompertz) 

nolog 

estat ic 

streg Weight_0 Residence i.M_Education i.M_Occupation, distribution(loglogistic) 

nolog 

estat ic 

 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(lognormal) 

nolog 
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estat ic 

 

//with coefficient estimates 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(weibull) 

nohr 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, 

distribution(exponential)nohr 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(gompertz) 

nohr 

 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(loglogistic) 

nolog 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(lognormal) 

nolog 

 

//to select the best model fit the model and type 

estat ic 

 

//schonfeld test 

quietly stcox Weight_0 Residence M_Education M_Occupation, schoenfeld(sch*) 

scaledsch(sca*) 

stphtest, detail 

stphtest, plot(Weight_0) msym(oh) 

stphtest, plot(Residence) msym(oh) 

stphtest, plot(M_Education) msym(oh) 

stphtest, plot(M_Occupation) msym(oh) 

 

//Goodness of fit cox model 

quietly stcox Weight_0 Residence M_Education M_Occupation, nohr mgale(mg) 

predict cs, csnell 

stset cs, failure(Died) 

sts generate H = na 

line H cs cs, sort xlab(0 1 to 4) ylab(0 1 to 4) 

drop mg 
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// survival function 

stcox  Weight_0 Residence M_Education M_Occupation, nolog 

stcurve, survival 

stcurve, survival at1(Weight_0=1) at2(Residence=2) at3(M_Education=3) 

at4(M_Occupation=4) 

lpattern(solid dash dot) 

stcurve, cumhaz 

 

streg Weight_0 i.Residence i.M_Education i.M_Occupation, distribution(gompertz) 

stcurve, survival 

stcurve, hazard 

stcurve, cumhazard
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APPENDIX 2: ART patient card, front 
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APPENDIX 3: ART patient card, back 
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APPENDIX 4: Support letter from Chancellor College 

 


